Skip to content
Snippets Groups Projects
Unverified Commit 02bce0be authored by jason's avatar jason Committed by GitHub
Browse files

Merge pull request #315 from madgik/update-algo-descriptions

update algorithm descriptions and labels
parents 1cafac86 1e4b4f3e
No related branches found
No related tags found
No related merge requests found
......@@ -21,7 +21,7 @@
{
"name": "y",
"label": "y",
"desc": "Observed dichotomous outcomes.",
"desc": "Observed dichotomous outcome.",
"type": "column",
"columnValuesSQLType": "text, integer",
"columnValuesIsCategorical": "true",
......
{
"name": "CART",
"desc": "CART, used to generate a decision tree from a dataset",
"label": "CART",
"desc": "Decision tree-based algorithm that splits the data into smaller subsets based on the feature that provides the most information gain, and then builds the tree recursively on the smaller subsets.",
"label": "Classification and Regression Trees (CART)",
"type": "python_iterative",
"parameters": [{
"name": "x",
"label": "x",
"desc": "Independent variables: A list of variables from database.",
"label": "Covariate (independent)",
"desc": "One or more variables",
"type": "column",
"columnValuesSQLType": "real, integer",
"columnValuesIsCategorical": "",
......@@ -17,8 +17,8 @@
"valueType": "string"
}, {
"name": "y",
"label": "y",
"desc": "Dependent variable: A variable from database.",
"label": "Variable (dependent)",
"desc": "A unique variable",
"type": "column",
"columnValuesSQLType": "real, integer, text",
"columnValuesIsCategorical": "",
......
{
"name": "ID3",
"desc": "Iterative Dichotomiser 3, used to generate a decision tree from a dataset",
"label": "ID3",
"desc": "Decision tree-based algorithm that builds the tree by choosing the feature with the highest information gain at each step.",
"label": "Iterative Dichotomiser 3 (ID3)",
"type": "iterative",
"parameters": [{
"name": "x",
"label": "x",
"desc": "Independent variables: A list of categorical variables from database.",
"label": "Covariate (independent)",
"desc": "One or more categorical variables",
"type": "column",
"columnValuesSQLType": "text,integer",
"columnValuesIsCategorical": "true",
......@@ -17,8 +17,8 @@
"valueType": "string"
}, {
"name": "y",
"label": "y",
"desc": "Dependent variable: A categorical variable from database.",
"label": "Variable (dependent)",
"desc": "A unique categorical variable",
"type": "column",
"columnValuesSQLType": "text,integer",
"columnValuesIsCategorical": "true",
......
{
"name": "KMEANS",
"desc": "KMEANS_accurate",
"desc": "Unsupervised learning algorithm that partitions a set of data points into k clusters, where k is a user-defined parameter. The algorithm iteratively updates the centroids of each cluster until convergence.",
"label": "k-Means Clustering",
"type": "iterative",
"parameters": [{
"name": "y",
"label": "y",
"desc": "A list of real/integer variables from database.",
"label": "Variables (independent)",
"desc": "A list of continuous variables",
"type": "column",
"columnValuesSQLType": "real,integer",
"columnValuesIsCategorical": "false",
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment