diff --git a/Exareme-Docker/src/mip-algorithms/CALIBRATION_BELT/properties.json b/Exareme-Docker/src/mip-algorithms/CALIBRATION_BELT/properties.json
index 1b4318e4bdf9758a8fc20302d68fab5431fe3509..09b1c81a314c87d6990f7350786067b0277471a4 100644
--- a/Exareme-Docker/src/mip-algorithms/CALIBRATION_BELT/properties.json
+++ b/Exareme-Docker/src/mip-algorithms/CALIBRATION_BELT/properties.json
@@ -21,7 +21,7 @@
         {
             "name": "y",
             "label": "y",
-            "desc": "Observed dichotomous outcomes.",
+            "desc": "Observed dichotomous outcome.",
             "type": "column",
             "columnValuesSQLType": "text, integer",
             "columnValuesIsCategorical": "true",
diff --git a/Exareme-Docker/src/mip-algorithms/CART/properties.json b/Exareme-Docker/src/mip-algorithms/CART/properties.json
index 201527f2558d27954aa3a3d5eb9a6785dd02c919..72112ec0d58086312b0420fd2fb29e84f656e095 100644
--- a/Exareme-Docker/src/mip-algorithms/CART/properties.json
+++ b/Exareme-Docker/src/mip-algorithms/CART/properties.json
@@ -1,12 +1,12 @@
 {
 	"name": "CART",
-	"desc": "CART, used to generate a decision tree from a dataset",
-	"label": "CART",
+	"desc": "Decision tree-based algorithm that splits the data into smaller subsets based on the feature that provides the most information gain, and then builds the tree recursively on the smaller subsets.",
+	"label": "Classification and Regression Trees (CART)",
 	"type": "python_iterative",
 	"parameters": [{
 			"name": "x",
-			"label": "x",
-			"desc": "Independent variables: A list of variables from database.",
+			"label": "Covariate (independent)",
+			"desc": "One or more variables",
 			"type": "column",
 			"columnValuesSQLType": "real, integer",
 			"columnValuesIsCategorical": "",
@@ -17,8 +17,8 @@
 			"valueType": "string"
 		}, {
 			"name": "y",
-			"label": "y",
-			"desc": "Dependent variable: A variable from database.",
+			"label": "Variable (dependent)",
+			"desc": "A unique variable",
 			"type": "column",
 			"columnValuesSQLType": "real, integer, text",
 			"columnValuesIsCategorical": "",
diff --git a/Exareme-Docker/src/mip-algorithms/ID3/properties.json b/Exareme-Docker/src/mip-algorithms/ID3/properties.json
index e7120e5a58acc77a4e097fa6b5c8a1d76be5dc4d..1f48c58c48942c2ce3d1028595ef6158073cf9e0 100644
--- a/Exareme-Docker/src/mip-algorithms/ID3/properties.json
+++ b/Exareme-Docker/src/mip-algorithms/ID3/properties.json
@@ -1,12 +1,12 @@
 {
 	"name": "ID3",
-	"desc": "Iterative Dichotomiser 3, used to generate a decision tree from a dataset",
-	"label": "ID3",
+	"desc": "Decision tree-based algorithm that builds the tree by choosing the feature with the highest information gain at each step.",
+	"label": "Iterative Dichotomiser 3 (ID3)",
 	"type": "iterative",
 	"parameters": [{
 			"name": "x",
-			"label": "x",
-			"desc": "Independent variables: A list of categorical variables from database.",
+			"label": "Covariate (independent)",
+			"desc": "One or more categorical variables",
 			"type": "column",
 			"columnValuesSQLType": "text,integer",
 			"columnValuesIsCategorical": "true",
@@ -17,8 +17,8 @@
 			"valueType": "string"
 		}, {
 			"name": "y",
-			"label": "y",
-			"desc": "Dependent variable: A categorical variable from database.",
+			"label": "Variable (dependent)",
+			"desc": "A unique categorical variable",
 			"type": "column",
 			"columnValuesSQLType": "text,integer",
 			"columnValuesIsCategorical": "true",
diff --git a/Exareme-Docker/src/mip-algorithms/KMEANS/properties.json b/Exareme-Docker/src/mip-algorithms/KMEANS/properties.json
index 3cb3c2615430bb9478aaac06cb2994bc8b7a87a5..10346998c558f2dd0a617599938ac602c9514767 100644
--- a/Exareme-Docker/src/mip-algorithms/KMEANS/properties.json
+++ b/Exareme-Docker/src/mip-algorithms/KMEANS/properties.json
@@ -1,12 +1,12 @@
 {
 	"name": "KMEANS",
-	"desc": "KMEANS_accurate",
+	"desc": "Unsupervised learning algorithm that partitions a set of data points into k clusters, where k is a user-defined parameter. The algorithm iteratively updates the centroids of each cluster until convergence.",
 	"label": "k-Means Clustering",
 	"type": "iterative",
 	"parameters": [{
 			"name": "y",
-			"label": "y",
-			"desc": "A list of real/integer variables from database.",
+			"label": "Variables (independent)",
+			"desc": "A list of continuous variables",
 			"type": "column",
 			"columnValuesSQLType": "real,integer",
 			"columnValuesIsCategorical": "false",