Skip to content
Snippets Groups Projects
Commit b0a010db authored by Benjamin Cumming's avatar Benjamin Cumming
Browse files

make correction to FVM formulation in docs

parent c2a84a00
No related branches found
No related tags found
No related merge requests found
......@@ -6,6 +6,7 @@ See \cite{lindsay_2004} for a detailed derivation of the cable equation, and ext
The one-dimensional cable equation introduced later in equations~\eq{eq:cable} and~\eq{eq:cable_balance} is based on the following expression in three dimensions (based on Maxwell's equations adapted for neurological modelling)
\begin{equation}
\nabla \cdot \vv{J} = 0,
\label{eq:J}
\end{equation}
where $\vv{J}$ is current density (units $A/m^2$).
Current density is in turn defined in terms of electric field $\vv{E}$ (units $V/m$)
......@@ -53,27 +54,38 @@ where
Note that the standard convention is followed, whereby membrane and synapse currents ($i_m$) are positive when outward, and electrod currents ($i_e$) are positive inward.
The PDE in (\ref{eq:cable}) is derived from the following mass balance expression for a cable segment $i$:
%\begin{align}
%\int_{\Omega_i}{c_m \pder{V}{t} } \deriv{v} =
%& + \sum_{j\in\mathcal{N}_i} {\int_{\Gamma_{i,j}} \frac{1}{r_L}\pder{V}{x} n_{i,j} \deriv{s} } \nonumber \\
%& + \int_{\Gamma_{ext}} {(i_m - i_e)} \deriv{s}
%\label{eq:cable_balance}
%\end{align}
\begin{equation}
\int_{\Omega_i}{c_m \pder{V}{t} } \deriv{v} =
- \sum_{j\in\mathcal{N}_i} {\int_{\Gamma_{i,j}} q_{i,j} \deriv{s} }
- \int_{\Gamma_{i}} {q_i} \deriv{s}
\label{eq:cable_balance}
The PDE in (\ref{eq:cable}) is derived by integrating~\eq{eq:J} over the volume of segment $i$:
\begin{equation*}
\int_{\Omega_i}{\nabla \cdot \vv{J} } \deriv{v} = 0,
\end{equation*}
Then applying the divergence theorem to turn the volume integral on the lhs into a surface integral
\begin{equation}
\sum_{j\in\mathcal{N}_i} {\int_{\Gamma_{i,j}} J_{i,j} \deriv{s} }
+ \int_{\Gamma_{i}} {J_m} \deriv{s} = 0
\label{eq:cable_balance_intermediate}
\end{equation}
where
\begin{itemize}
\item $\int_\Omega \cdot \deriv{v}$ is shorthand for the volume integral over the segment $\Omega_i$
\item $\int_\Gamma \cdot \deriv{s}$ is shorthand for the surface integral over the surface $\Gamma$
\item $q_{i,j}=-\frac{1}{r_L}\pder{V}{x} n_{i,j}$ is the flux per unit area of current \emph{from segment $i$ to segment $j$} over the interface $\Gamma_{i,j}$ between the two segments.
\item $q_i=i_m - i_e$ is the flux per unit area over the cell membrane $\Gamma_i$ due to ion channels, synapses and electrodes (where $q_i>0$ implies flux out of the cell).
\item $J_{i,j}=-\frac{1}{r_L}\pder{V}{x} n_{i,j}$ is the flux per unit area of current \emph{from segment $i$ to segment $j$} over the interface $\Gamma_{i,j}$ between the two segments.
\item the set $\mathcal{N}_i$ is the set of segments that are neighbours of $\Omega_i$
\end{itemize}
The transmembrane current density $J_m=\vv{J}\cdot\vv{n}$ is a function of the membrane potential
\begin{equation}
J_m = c_m\pder{V}{t} + i_m - i_e,
\label{eq:Jm}
\end{equation}
which has contributions from the ion channels and synapses ($i_m$), electrodes ($i_e$) and capacitive current due to polarization of the membrane whose bi-layer lipid structure causes it to behave locally like a parallel plate capacitor.
Substituting~\eq{eq:Jm} into~\eq{eq:cable_balance_intermediate} and rearanging gives
\begin{equation}
\int_{\Gamma_{i}} {c_m\pder{V}{t}} \deriv{s}
= - \sum_{j\in\mathcal{N}_i} {\int_{\Gamma_{i,j}} J_{i,j} \deriv{s} }
- \int_{\Gamma_{i}} {(i_m - i_e)} \deriv{s}
\label{eq:cable_balance}
\end{equation}
The surface of the cable segment is sub-divided into the internal and external surfaces.
The external surface $\Gamma_{i}$ is the cell membrane at the interface between the extra-cellular and intra-cellular regions.
......@@ -105,50 +117,42 @@ The finite volume method is a natural choice for the solution of the conservatio
%-------------------------------------------------------------------------------
\subsubsection{Temporal derivative}
%-------------------------------------------------------------------------------
We proceed by defining the \emph{volume average} of a quantity $\varphi$ as follows:
\begin{equation}
\bar{\varphi}_i = \frac{1}{\Delta_i} \int_{\Omega_i}{\varphi}\deriv{v},
\end{equation}
where $\Omega_i$ is the control volume with the point $x_i$ at its centroid illustrated in \fig{fig:segment}, and $\Delta_i$ is the volume of the control volume $\Omega_i$.
The integral one the left hand side of~\eq{eq:cable_balance} can be expressed in terms of the volume average of $V$
The integral on the lhs of~\eq{eq:cable_balance} can be approximated by assuming that the average transmembrane potential $V$ in $\Omega_i$ is equal to the potential $V_i$ defined at the centre of the segment:
\begin{equation}
\int_{\Omega}{c_m \pder{V}{t} } \deriv{v} = \Delta_i c_m \pder{\bar{V}_i}{t}.
\int_{\Gamma_i}{c_m \pder{V}{t} } \deriv{v} \approx \sigma_i c_m \pder{V_i}{t},
\label{eq:dvdt}
\end{equation}
In the FV formulation the voltage $V_i$ at the node $x_i$ is equal to the volume average, i.e. $V_i=\bar{V}_i$.
This is effectively treats voltage as a piecewise continuous funtion, with discontinuities at the boundary between adjacent segements.
where $\sigma_i$ is the surface area of the membrane potential.
%-------------------------------------------------------------------------------
\subsubsection{Intra-cellular flux}
%-------------------------------------------------------------------------------
The intracellular flux terms in~\eq{eq:cable_balance} are sum of the flux over the interfaces between compartment $i$ and its set of neighbouring compartments $\mathcal{N}_i$ is
\begin{equation}
\sum_{j\in\mathcal{N}_i} { \int_{\Gamma_{i,j}} { q_{i,j} \deriv{s} } }.
\sum_{j\in\mathcal{N}_i} { \int_{\Gamma_{i,j}} { J_{i,j} \deriv{s} } }.
\end{equation}
where the flux per unit area from compartment $i$ to compartment $j$ is
\begin{align}
q_{i,j} = - \frac{1}{r_L}\pder{V}{x} n_{i,j}.
\label{eq:q_ij}
J_{i,j} = - \frac{1}{r_L}\pder{V}{x} n_{i,j}.
\label{eq:J_ij_exact}
\end{align}
The derivative with respect to the outward-facing normal can be approximated as follows
\begin{equation*}
\pder{V}{x} n_{i,j} \approx \frac{V_j - V_i}{\Delta x_{i,j}}
\end{equation*}
where $\Delta x_{i,j}$ is the distance between $x_i$ and $x_j$, i.e. $\Delta x_{i,j}=|x_i-x_j|$.
Using this approximation for the derivative, the flux over the surface in~\eq{eq:q_ij} is approximated as
Using this approximation for the derivative, the flux over the surface in~\eq{eq:J_ij_exact} is approximated as
\begin{align}
q_{i,j} \approx \frac{1}{r_L}\frac{V_i - V_j}{\Delta x_{i,j}}.
\label{eq:q_ij_intermediate}
J_{i,j} \approx \frac{1}{r_L}\frac{V_i - V_j}{\Delta x_{i,j}}.
\label{eq:J_ij_intermediate}
\end{align}
The terms inside the integral in equation~\eq{eq:q_ij_intermediate} are constant everywhere on the surface $\Gamma_{i,j}$, so the integral becomes
The terms inside the integral in equation~\eq{eq:J_ij_intermediate} are constant everywhere on the surface $\Gamma_{i,j}$, so the integral becomes
\begin{align}
q_{i,j} &= \int_{\Gamma_{i,j}} \frac{1}{r_L}\frac{V_i-V_j}{\Delta x_{i,j}} \deriv{s} \nonumber \\
&= \frac{1}{r_L}\frac{V_i-V_j}{\Delta x_{i,j}} \int_{\Gamma_{i,j}} 1 \deriv{s} \nonumber \\
&= \frac{1}{r_L}\frac{V_i-V_j}{\Delta x_{i,j}} \sigma_{i,j} \nonumber \\
&= \frac{\pi a_{i,j}^2}{r_L \Delta x_{i,j}} (V_i-V_j)
\label{eq:q_ij}
J_{i,j} &\approx \int_{\Gamma_{i,j}} \frac{1}{r_L}\frac{V_i-V_j}{\Delta x_{i,j}} \deriv{s} \nonumber \\
&= \frac{1}{r_L \Delta x_{i,j}}(V_i-V_j) \int_{\Gamma_{i,j}} 1 \deriv{s} \nonumber \\
&= \frac{\sigma_{ij}}{r_L \Delta x_{i,j}}(V_i-V_j) \nonumber \\
\label{eq:J_ij}
\end{align}
where $\sigma_{i,j}=\pi a_{i,j}^2$ is the area of the surface $\Gamma_{i,j}$, which is a circle of radius $a_{i,j}$.
......@@ -157,7 +161,7 @@ Some symmetries
\item $\sigma_{i,j}=\sigma_{j,i}$ : surface area of $\Gamma_{i,j}$
\item $\Delta x_{i,j}=\Delta x_{j,i}$ : distance between $x_i$ and $x_j$
\item $n_{i,j}=-n_{j,i}$ : surface ``norm''/orientation
\item $q_{i,j}=n_{j,i}q_{i,j}=-q_{j,i}$ : charge flux over $\Gamma_{i,j}$
\item $J_{i,j}=n_{j,i}\cdot J_{i,j}=-J_{j,i}$ : charge flux over $\Gamma_{i,j}$
\end{itemize}
%-------------------------------------------------------------------------------
......@@ -165,17 +169,17 @@ Some symmetries
%-------------------------------------------------------------------------------
The final term in~\eq{eq:cable_balance} with an integral is the cell membrane flux contribution
\begin{equation}
q_{i}^{\text{m}} = \int_{\Gamma_{ext}} {(i_m - i_e)} \deriv{s},
\int_{\Gamma_{ext}} {(i_m - i_e)} \deriv{s},
\end{equation}
where the current $i_m$ is due to ion channel and synapses, and $i_e$ is any artificial electrode current.
The $i_m$ term is dependent on the potential difference over the cell membrane $V_i$.
The current terms are an average per unit area, therefore the total flux
\begin{align}
q_{i}^{\text{m}}
& = (i_m(V_i) - i_e(x_i))\int_{\Gamma_{ext}} {1} \deriv{s} \nonumber \\
& = \sigma_i\cdot(i_m(V_i) - i_e(x_i)),
\label{eq:q_im}
\end{align}
\begin{equation}
\int_{\Gamma_{ext}} {(i_m - i_e)} \deriv{s}
\approx
\sigma_i(i_m(V_i) - i_e(x_i)),
\label{eq:J_im}
\end{equation}
where $\sigma_i$ is the surface area the of the exterior of the cable segment, i.e. the surface corresponding to the cell membrane.
Each cable segment is a conical frustrum, as illustrated in \fig{fig:segment}.
......@@ -190,18 +194,12 @@ where $a_{i,\ell}$ and $a_{i,r}$ are the radii of at the left and right end of t
\subsubsection{Putting it all together}
%-------------------------------------------------------------------------------
By substituting the volume averaging of the temporal derivative in~\eq{eq:dvdt} approximations for the flux over the surfaces in~\eq{eq:q_ij} and~\eq{eq:cv_volume} respectively into the conservation equation~\eq{eq:cable_balance} we get the following ODE defined for each node in the cell
\note{there is an error somewhere, because the units on the lhs and the first summation term on the rhs do not match: $[lhs]=F\cdot V\cdot s^{-1}\cdot cm$ and $[rhs]=F\cdot V\cdot s^{-1}$ }
\begin{equation}
\Delta_i c_m \dder{V_i}{t}
\sigma_i c_m \dder{V_i}{t}
= -\sum_{j\in\mathcal{N}_i} {\frac{\sigma_{i,j}}{r_L \Delta x_{i,j}} (V_i-V_j)} - \sigma_i\cdot(i_m(V_i) - i_e(x_i)),
\label{eq:ode}
\end{equation}
where
%\begin{itemize}
% \item $\sigma_{i,j}=\pi a_{i,j}^2$ is the area of the surface between two adjacent segments $i$ and $j$.
% \item $\sigma_{i}=\pi(a_{i,\ell} + a_{i,r})+\sqrt{\Delta x_i^2 + (a_{i,\ell} - a_{i,r})^2}.$ is the lateral area of the conical frustrum describing segment $i$.
% \item $\Delta_{i}=\frac{\pi\Delta x_i}{2} \left( a_{i,l}^2 + a_{i,r}^2 \right)$ is the volume of the segment $\Omega_i$.
%\end{itemize}
\begin{equation}
\sigma_{i,j} = \pi a_{i,j}^2
\label{eq:sigma_ij}
......@@ -211,23 +209,18 @@ is the area of the surface between two adjacent segments $i$ and $j$, and
\sigma_{i} = \pi(a_{i,\ell} + a_{i,r}) \sqrt{\Delta x_i^2 + (a_{i,\ell} - a_{i,r})^2},
\label{eq:sigma_i}
\end{equation}
is the lateral area of the conical frustrum describing segment $i$, and
\begin{equation}
\Delta_{i} = \frac{\pi\Delta x_i}{2} \left( a_{i,l}^2 + a_{i,r}^2 \right)
\label{eq:delta_i}
\end{equation}
is the volume of the segment $\Omega_i$.
is the lateral area of the conical frustrum describing segment $i$.
%-------------------------------------------------------------------------------
\subsubsection{Handling branches}
%-------------------------------------------------------------------------------
The value of the lateral area and volume, $\sigma_i$ and $\Delta_i$ in~\eq{eq:sigma_i} and~\eq{eq:delta_i} respetively, must include contributions from each branch at branch points.
The value of the lateral area $\sigma_i$ in~\eq{eq:sigma_i} is the sum of the areaof each branch at branch points.
\todo{a picture of a branching point to illustrate}
\todo{a picture of a soma to illustrate the ball and stick model with a sphere for the soma and sticks for the dendrites branching off the soma.}
\begin{equation}
\sigma_i = \sum_{j\in\mathcal{N}_i} {}
\sigma_i = \sum_{j\in\mathcal{N}_i} {\dots}
\end{equation}
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment