From b0a010db10cabe3724d4d131136bdecfa762355b Mon Sep 17 00:00:00 2001 From: bcumming <bcumming@cscs.ch> Date: Wed, 20 Jan 2016 10:33:45 +0100 Subject: [PATCH] make correction to FVM formulation in docs --- docs/formulation.tex | 111 ++++++++++++++++++++----------------------- 1 file changed, 52 insertions(+), 59 deletions(-) diff --git a/docs/formulation.tex b/docs/formulation.tex index bf8f2fe4..3275b658 100644 --- a/docs/formulation.tex +++ b/docs/formulation.tex @@ -6,6 +6,7 @@ See \cite{lindsay_2004} for a detailed derivation of the cable equation, and ext The one-dimensional cable equation introduced later in equations~\eq{eq:cable} and~\eq{eq:cable_balance} is based on the following expression in three dimensions (based on Maxwell's equations adapted for neurological modelling) \begin{equation} \nabla \cdot \vv{J} = 0, + \label{eq:J} \end{equation} where $\vv{J}$ is current density (units $A/m^2$). Current density is in turn defined in terms of electric field $\vv{E}$ (units $V/m$) @@ -53,27 +54,38 @@ where Note that the standard convention is followed, whereby membrane and synapse currents ($i_m$) are positive when outward, and electrod currents ($i_e$) are positive inward. -The PDE in (\ref{eq:cable}) is derived from the following mass balance expression for a cable segment $i$: -%\begin{align} - %\int_{\Omega_i}{c_m \pder{V}{t} } \deriv{v} = - %& + \sum_{j\in\mathcal{N}_i} {\int_{\Gamma_{i,j}} \frac{1}{r_L}\pder{V}{x} n_{i,j} \deriv{s} } \nonumber \\ - %& + \int_{\Gamma_{ext}} {(i_m - i_e)} \deriv{s} - %\label{eq:cable_balance} -%\end{align} -\begin{equation} - \int_{\Omega_i}{c_m \pder{V}{t} } \deriv{v} = - - \sum_{j\in\mathcal{N}_i} {\int_{\Gamma_{i,j}} q_{i,j} \deriv{s} } - - \int_{\Gamma_{i}} {q_i} \deriv{s} - \label{eq:cable_balance} +The PDE in (\ref{eq:cable}) is derived by integrating~\eq{eq:J} over the volume of segment $i$: +\begin{equation*} + \int_{\Omega_i}{\nabla \cdot \vv{J} } \deriv{v} = 0, +\end{equation*} +Then applying the divergence theorem to turn the volume integral on the lhs into a surface integral +\begin{equation} + \sum_{j\in\mathcal{N}_i} {\int_{\Gamma_{i,j}} J_{i,j} \deriv{s} } + + \int_{\Gamma_{i}} {J_m} \deriv{s} = 0 + \label{eq:cable_balance_intermediate} \end{equation} where \begin{itemize} \item $\int_\Omega \cdot \deriv{v}$ is shorthand for the volume integral over the segment $\Omega_i$ \item $\int_\Gamma \cdot \deriv{s}$ is shorthand for the surface integral over the surface $\Gamma$ - \item $q_{i,j}=-\frac{1}{r_L}\pder{V}{x} n_{i,j}$ is the flux per unit area of current \emph{from segment $i$ to segment $j$} over the interface $\Gamma_{i,j}$ between the two segments. - \item $q_i=i_m - i_e$ is the flux per unit area over the cell membrane $\Gamma_i$ due to ion channels, synapses and electrodes (where $q_i>0$ implies flux out of the cell). + \item $J_{i,j}=-\frac{1}{r_L}\pder{V}{x} n_{i,j}$ is the flux per unit area of current \emph{from segment $i$ to segment $j$} over the interface $\Gamma_{i,j}$ between the two segments. \item the set $\mathcal{N}_i$ is the set of segments that are neighbours of $\Omega_i$ \end{itemize} +The transmembrane current density $J_m=\vv{J}\cdot\vv{n}$ is a function of the membrane potential +\begin{equation} + J_m = c_m\pder{V}{t} + i_m - i_e, + \label{eq:Jm} +\end{equation} +which has contributions from the ion channels and synapses ($i_m$), electrodes ($i_e$) and capacitive current due to polarization of the membrane whose bi-layer lipid structure causes it to behave locally like a parallel plate capacitor. + +Substituting~\eq{eq:Jm} into~\eq{eq:cable_balance_intermediate} and rearanging gives +\begin{equation} + \int_{\Gamma_{i}} {c_m\pder{V}{t}} \deriv{s} + = - \sum_{j\in\mathcal{N}_i} {\int_{\Gamma_{i,j}} J_{i,j} \deriv{s} } + - \int_{\Gamma_{i}} {(i_m - i_e)} \deriv{s} + \label{eq:cable_balance} +\end{equation} + The surface of the cable segment is sub-divided into the internal and external surfaces. The external surface $\Gamma_{i}$ is the cell membrane at the interface between the extra-cellular and intra-cellular regions. @@ -105,50 +117,42 @@ The finite volume method is a natural choice for the solution of the conservatio %------------------------------------------------------------------------------- \subsubsection{Temporal derivative} %------------------------------------------------------------------------------- -We proceed by defining the \emph{volume average} of a quantity $\varphi$ as follows: -\begin{equation} - \bar{\varphi}_i = \frac{1}{\Delta_i} \int_{\Omega_i}{\varphi}\deriv{v}, -\end{equation} -where $\Omega_i$ is the control volume with the point $x_i$ at its centroid illustrated in \fig{fig:segment}, and $\Delta_i$ is the volume of the control volume $\Omega_i$. -The integral one the left hand side of~\eq{eq:cable_balance} can be expressed in terms of the volume average of $V$ +The integral on the lhs of~\eq{eq:cable_balance} can be approximated by assuming that the average transmembrane potential $V$ in $\Omega_i$ is equal to the potential $V_i$ defined at the centre of the segment: \begin{equation} - \int_{\Omega}{c_m \pder{V}{t} } \deriv{v} = \Delta_i c_m \pder{\bar{V}_i}{t}. + \int_{\Gamma_i}{c_m \pder{V}{t} } \deriv{v} \approx \sigma_i c_m \pder{V_i}{t}, \label{eq:dvdt} \end{equation} - -In the FV formulation the voltage $V_i$ at the node $x_i$ is equal to the volume average, i.e. $V_i=\bar{V}_i$. -This is effectively treats voltage as a piecewise continuous funtion, with discontinuities at the boundary between adjacent segements. +where $\sigma_i$ is the surface area of the membrane potential. %------------------------------------------------------------------------------- \subsubsection{Intra-cellular flux} %------------------------------------------------------------------------------- The intracellular flux terms in~\eq{eq:cable_balance} are sum of the flux over the interfaces between compartment $i$ and its set of neighbouring compartments $\mathcal{N}_i$ is \begin{equation} - \sum_{j\in\mathcal{N}_i} { \int_{\Gamma_{i,j}} { q_{i,j} \deriv{s} } }. + \sum_{j\in\mathcal{N}_i} { \int_{\Gamma_{i,j}} { J_{i,j} \deriv{s} } }. \end{equation} where the flux per unit area from compartment $i$ to compartment $j$ is \begin{align} - q_{i,j} = - \frac{1}{r_L}\pder{V}{x} n_{i,j}. - \label{eq:q_ij} + J_{i,j} = - \frac{1}{r_L}\pder{V}{x} n_{i,j}. + \label{eq:J_ij_exact} \end{align} The derivative with respect to the outward-facing normal can be approximated as follows \begin{equation*} \pder{V}{x} n_{i,j} \approx \frac{V_j - V_i}{\Delta x_{i,j}} \end{equation*} where $\Delta x_{i,j}$ is the distance between $x_i$ and $x_j$, i.e. $\Delta x_{i,j}=|x_i-x_j|$. -Using this approximation for the derivative, the flux over the surface in~\eq{eq:q_ij} is approximated as +Using this approximation for the derivative, the flux over the surface in~\eq{eq:J_ij_exact} is approximated as \begin{align} - q_{i,j} \approx \frac{1}{r_L}\frac{V_i - V_j}{\Delta x_{i,j}}. - \label{eq:q_ij_intermediate} + J_{i,j} \approx \frac{1}{r_L}\frac{V_i - V_j}{\Delta x_{i,j}}. + \label{eq:J_ij_intermediate} \end{align} -The terms inside the integral in equation~\eq{eq:q_ij_intermediate} are constant everywhere on the surface $\Gamma_{i,j}$, so the integral becomes +The terms inside the integral in equation~\eq{eq:J_ij_intermediate} are constant everywhere on the surface $\Gamma_{i,j}$, so the integral becomes \begin{align} - q_{i,j} &= \int_{\Gamma_{i,j}} \frac{1}{r_L}\frac{V_i-V_j}{\Delta x_{i,j}} \deriv{s} \nonumber \\ - &= \frac{1}{r_L}\frac{V_i-V_j}{\Delta x_{i,j}} \int_{\Gamma_{i,j}} 1 \deriv{s} \nonumber \\ - &= \frac{1}{r_L}\frac{V_i-V_j}{\Delta x_{i,j}} \sigma_{i,j} \nonumber \\ - &= \frac{\pi a_{i,j}^2}{r_L \Delta x_{i,j}} (V_i-V_j) - \label{eq:q_ij} + J_{i,j} &\approx \int_{\Gamma_{i,j}} \frac{1}{r_L}\frac{V_i-V_j}{\Delta x_{i,j}} \deriv{s} \nonumber \\ + &= \frac{1}{r_L \Delta x_{i,j}}(V_i-V_j) \int_{\Gamma_{i,j}} 1 \deriv{s} \nonumber \\ + &= \frac{\sigma_{ij}}{r_L \Delta x_{i,j}}(V_i-V_j) \nonumber \\ + \label{eq:J_ij} \end{align} where $\sigma_{i,j}=\pi a_{i,j}^2$ is the area of the surface $\Gamma_{i,j}$, which is a circle of radius $a_{i,j}$. @@ -157,7 +161,7 @@ Some symmetries \item $\sigma_{i,j}=\sigma_{j,i}$ : surface area of $\Gamma_{i,j}$ \item $\Delta x_{i,j}=\Delta x_{j,i}$ : distance between $x_i$ and $x_j$ \item $n_{i,j}=-n_{j,i}$ : surface ``norm''/orientation - \item $q_{i,j}=n_{j,i}q_{i,j}=-q_{j,i}$ : charge flux over $\Gamma_{i,j}$ + \item $J_{i,j}=n_{j,i}\cdot J_{i,j}=-J_{j,i}$ : charge flux over $\Gamma_{i,j}$ \end{itemize} %------------------------------------------------------------------------------- @@ -165,17 +169,17 @@ Some symmetries %------------------------------------------------------------------------------- The final term in~\eq{eq:cable_balance} with an integral is the cell membrane flux contribution \begin{equation} - q_{i}^{\text{m}} = \int_{\Gamma_{ext}} {(i_m - i_e)} \deriv{s}, + \int_{\Gamma_{ext}} {(i_m - i_e)} \deriv{s}, \end{equation} where the current $i_m$ is due to ion channel and synapses, and $i_e$ is any artificial electrode current. The $i_m$ term is dependent on the potential difference over the cell membrane $V_i$. The current terms are an average per unit area, therefore the total flux -\begin{align} - q_{i}^{\text{m}} - & = (i_m(V_i) - i_e(x_i))\int_{\Gamma_{ext}} {1} \deriv{s} \nonumber \\ - & = \sigma_i\cdot(i_m(V_i) - i_e(x_i)), - \label{eq:q_im} -\end{align} +\begin{equation} + \int_{\Gamma_{ext}} {(i_m - i_e)} \deriv{s} + \approx + \sigma_i(i_m(V_i) - i_e(x_i)), + \label{eq:J_im} +\end{equation} where $\sigma_i$ is the surface area the of the exterior of the cable segment, i.e. the surface corresponding to the cell membrane. Each cable segment is a conical frustrum, as illustrated in \fig{fig:segment}. @@ -190,18 +194,12 @@ where $a_{i,\ell}$ and $a_{i,r}$ are the radii of at the left and right end of t \subsubsection{Putting it all together} %------------------------------------------------------------------------------- By substituting the volume averaging of the temporal derivative in~\eq{eq:dvdt} approximations for the flux over the surfaces in~\eq{eq:q_ij} and~\eq{eq:cv_volume} respectively into the conservation equation~\eq{eq:cable_balance} we get the following ODE defined for each node in the cell -\note{there is an error somewhere, because the units on the lhs and the first summation term on the rhs do not match: $[lhs]=F\cdot V\cdot s^{-1}\cdot cm$ and $[rhs]=F\cdot V\cdot s^{-1}$ } \begin{equation} - \Delta_i c_m \dder{V_i}{t} + \sigma_i c_m \dder{V_i}{t} = -\sum_{j\in\mathcal{N}_i} {\frac{\sigma_{i,j}}{r_L \Delta x_{i,j}} (V_i-V_j)} - \sigma_i\cdot(i_m(V_i) - i_e(x_i)), \label{eq:ode} \end{equation} where -%\begin{itemize} -% \item $\sigma_{i,j}=\pi a_{i,j}^2$ is the area of the surface between two adjacent segments $i$ and $j$. -% \item $\sigma_{i}=\pi(a_{i,\ell} + a_{i,r})+\sqrt{\Delta x_i^2 + (a_{i,\ell} - a_{i,r})^2}.$ is the lateral area of the conical frustrum describing segment $i$. -% \item $\Delta_{i}=\frac{\pi\Delta x_i}{2} \left( a_{i,l}^2 + a_{i,r}^2 \right)$ is the volume of the segment $\Omega_i$. -%\end{itemize} \begin{equation} \sigma_{i,j} = \pi a_{i,j}^2 \label{eq:sigma_ij} @@ -211,23 +209,18 @@ is the area of the surface between two adjacent segments $i$ and $j$, and \sigma_{i} = \pi(a_{i,\ell} + a_{i,r}) \sqrt{\Delta x_i^2 + (a_{i,\ell} - a_{i,r})^2}, \label{eq:sigma_i} \end{equation} -is the lateral area of the conical frustrum describing segment $i$, and -\begin{equation} - \Delta_{i} = \frac{\pi\Delta x_i}{2} \left( a_{i,l}^2 + a_{i,r}^2 \right) - \label{eq:delta_i} -\end{equation} -is the volume of the segment $\Omega_i$. +is the lateral area of the conical frustrum describing segment $i$. %------------------------------------------------------------------------------- \subsubsection{Handling branches} %------------------------------------------------------------------------------- -The value of the lateral area and volume, $\sigma_i$ and $\Delta_i$ in~\eq{eq:sigma_i} and~\eq{eq:delta_i} respetively, must include contributions from each branch at branch points. +The value of the lateral area $\sigma_i$ in~\eq{eq:sigma_i} is the sum of the areaof each branch at branch points. \todo{a picture of a branching point to illustrate} \todo{a picture of a soma to illustrate the ball and stick model with a sphere for the soma and sticks for the dendrites branching off the soma.} \begin{equation} - \sigma_i = \sum_{j\in\mathcal{N}_i} {} + \sigma_i = \sum_{j\in\mathcal{N}_i} {\dots} \end{equation} -- GitLab