Skip to content
Snippets Groups Projects
Commit 44199041 authored by Didi Hou's avatar Didi Hou Committed by Administrator
Browse files

/

parent cbf48d7c
No related branches found
No related tags found
1 merge request!35Pre-release MAM v1.1.0
%% Cell type:markdown id:b1331599 tags: %% Cell type:markdown id:b1331599 tags:
# Down-scaled multi-area model # Down-scaled multi-area model
%% Cell type:markdown id:b952d0ea tags: %% Cell type:markdown id:b952d0ea tags:
#### Notebook structure <a class="anchor" id="toc"></a> #### Notebook structure <a class="anchor" id="toc"></a>
* [S0. Configuration](#section_0) * [S0. Configuration](#section_0)
* [S1. Parameterization](#section_1) * [S1. Parameterization](#section_1)
* [1.1. Parameters to tune](#section_1_1) * [1.1. Parameters to tune](#section_1_1)
* [1.2. Default parameters](#section_1_2) * [1.2. Default parameters](#section_1_2)
* [S2. Multi-Area Model Instantiation and Simulation](#section_2) * [S2. Multi-Area Model Instantiation and Simulation](#section_2)
* [2.1. Insantiate a multi-area model](#section_2_1) * [2.1. Insantiate a multi-area model](#section_2_1)
* [2.2. Predict firing rates from theory](#section_2_2) * [2.2. Predict firing rates from theory](#section_2_2)
* [2.3. Extract and visualize interareal connectivity](#section_2_3) * [2.3. Extract and visualize interareal connectivity](#section_2_3)
* [2.4. Run a simulation](#section_2_4) * [2.4. Run a simulation](#section_2_4)
* [S3. Simulation Results Visualization](#section_3) * [S3. Simulation Results Visualization](#section_3)
* [3.1. Instantaneous and mean firing rate across all populations](#section_3_1) * [3.1. Instantaneous and mean firing rate across all populations](#section_3_1)
* [3.2. Resting state plots](#section_3_2) * [3.2. Resting state plots](#section_3_2)
* [3.3. Time-averaged population rates](#section_3_3) * [3.3. Time-averaged population rates](#section_3_3)
%% Cell type:markdown id:d782e527 tags: %% Cell type:markdown id:d782e527 tags:
## S0. Configuration <a class="anchor" id="section_0"></a> ## S0. Configuration <a class="anchor" id="section_0"></a>
%% Cell type:code id:9d6cc7d9-3110-4d96-9f9a-9ec7dee6d145 tags: %% Cell type:code id:9d6cc7d9-3110-4d96-9f9a-9ec7dee6d145 tags:
``` python ``` python
# Create config file # Create config file
with open('config.py', 'w') as fp: with open('config.py', 'w') as fp:
fp.write( fp.write(
'''import os '''import os
base_path = os.path.abspath(".") base_path = os.path.abspath(".")
data_path = os.path.abspath("simulations") data_path = os.path.abspath("simulations")
jobscript_template = "python {base_path}/run_simulation.py {label}" jobscript_template = "python {base_path}/run_simulation.py {label}"
submit_cmd = "bash -c" submit_cmd = "bash -c"
''') ''')
``` ```
%% Cell type:code id:96517739 tags: %% Cell type:code id:96517739 tags:
``` python ``` python
%matplotlib inline %matplotlib inline
import numpy as np import numpy as np
import os import os
import nest import nest
import json import json
import sys import sys
from IPython.display import display, HTML from IPython.display import display, HTML
from multiarea_model import MultiAreaModel from multiarea_model import MultiAreaModel
from config import base_path, data_path from config import base_path, data_path
sys.path.append('./figures/MAM2EBRAINS') sys.path.append('./figures/MAM2EBRAINS')
``` ```
%% Output %% Output
-- N E S T -- -- N E S T --
Copyright (C) 2004 The NEST Initiative Copyright (C) 2004 The NEST Initiative
Version: 3.5 Version: 3.5
Built: Jul 12 2023 06:25:27 Built: Jul 12 2023 06:25:27
This program is provided AS IS and comes with This program is provided AS IS and comes with
NO WARRANTY. See the file LICENSE for details. NO WARRANTY. See the file LICENSE for details.
Problems or suggestions? Problems or suggestions?
Visit https://www.nest-simulator.org Visit https://www.nest-simulator.org
Type 'nest.help()' to find out more about NEST. Type 'nest.help()' to find out more about NEST.
%% Cell type:code id:7e07b0d0 tags: %% Cell type:code id:7e07b0d0 tags:
``` python ``` python
%%capture captured %%capture captured
!pip install nested_dict dicthash !pip install nested_dict dicthash
``` ```
%% Cell type:code id:1d440c07-9b69-4e52-8573-26b13493bc5a tags: %% Cell type:code id:1d440c07-9b69-4e52-8573-26b13493bc5a tags:
``` python ``` python
# Jupyter notebook display format setting # Jupyter notebook display format setting
style = """ style = """
<style> <style>
table {float:left} table {float:left}
</style> </style>
""" """
display(HTML(style)) display(HTML(style))
``` ```
%% Output %% Output
%% Cell type:markdown id:27160ba8 tags: %% Cell type:markdown id:27160ba8 tags:
Go back to [Notebook structure](#toc) Go back to [Notebook structure](#toc)
%% Cell type:markdown id:df83f5ea-1c4b-44d3-9926-01786aa46e14 tags: %% Cell type:markdown id:df83f5ea-1c4b-44d3-9926-01786aa46e14 tags:
## S1. Parameterization <a class="anchor" id="section_1"></a> ## S1. Parameterization <a class="anchor" id="section_1"></a>
%% Cell type:markdown id:30655817 tags: %% Cell type:markdown id:30655817 tags:
### 1.1. Parameters to tune <a class="anchor" id="section_1_1"></a> ### 1.1. Parameters to tune <a class="anchor" id="section_1_1"></a>
%% Cell type:markdown id:4f67c1ba tags: %% Cell type:markdown id:4f67c1ba tags:
|Parameter|Default value|Value range/options|Value assigned|Description| |Parameter|Default value|Value range/options|Value assigned|Description|
|:-------:|:-----------:|:-----------------:|:------------:|:---------:| |:-------:|:-----------:|:-----------------:|:------------:|:---------:|
|scale_down_to|1. |(0, 1.0] |0.005 |$^1$ | |scale_down_to|1. |(0, 1.0] |0.005 |$^1$ |
|cc_weights_factor|1. |[1.0, 2.5] |1. |$^2$ | |cc_weights_factor|1. |[1.0, 2.5] |1. |$^2$ |
|areas_simulated|complete_area_list|Sublists of complete_area_list|complete_area_list|$^3$| |areas_simulated|complete_area_list|Sublists of complete_area_list|complete_area_list|$^3$|
|replace_non_simulated_areas|None|None, 'hom_poisson_stat', 'het_poisson_stat', 'het_current_nonstat'|'het_poisson_stat'|$^4$ | |replace_non_simulated_areas|None|None, 'hom_poisson_stat', 'het_poisson_stat', 'het_current_nonstat'|'het_poisson_stat'|$^4$ |
%% Cell type:markdown id:a2161477 tags: %% Cell type:markdown id:a2161477 tags:
1. `scale_down_to` <br> 1. `scale_down_to` <br>
`scale_down_to` is the down-scaling factor which defines the the ratio of the full scale multi-area model being down-scaled to a model with fewer neurons and indegrees so as to be simulated on machines with lower computational ability and the simulation results can be obtained within relative shorter period of time. <br> Its deafualt value if `1.` meaning full scale simulation. <br> In the pre-set downscale version, it's set as `0.005`, where the numer of neurons and indegrees are both scaled down to 0.5% of its full scale amount, where the model can usually be simulated on a local machine. <br> **Warning**: This will not yield reasonable dynamical results from the network and is only meant to demonstrate the simulation workflow <br> `scale_down_to` is the down-scaling factor which defines the the ratio of the full scale multi-area model being down-scaled to a model with fewer neurons and indegrees so as to be simulated on machines with lower computational ability and the simulation results can be obtained within relative shorter period of time. <br> Its deafualt value if `1.` meaning full scale simulation. <br> In the pre-set downscale version, it's set as `0.005`, where the numer of neurons and indegrees are both scaled down to 0.5% of its full scale amount, where the model can usually be simulated on a local machine. <br> **Warning**: This will not yield reasonable dynamical results from the network and is only meant to demonstrate the simulation workflow <br>
2. `cc_weights_factor` <br> 2. `cc_weights_factor` <br>
This scaling factor controls the cortico-cortical synaptic strength. <br> By default it's set as `1.0`, where the inter-area synaptic strength is the same as the intra-areal. <br> **Important**: This factor changes the network activity from ground state to metastable state. <br> This scaling factor controls the cortico-cortical synaptic strength. <br> By default it's set as `1.0`, where the inter-area synaptic strength is the same as the intra-areal. <br> **Important**: This factor changes the network activity from ground state to metastable state. <br>
3. `areas_simulated` <br> 3. `areas_simulated` <br>
This parameter specifies the cortical areas included in the simulation process. Its default value is `complete_area_list` meaning all the areas in the complete_area_list will be actually simulated. <br> This parameter specifies the cortical areas included in the simulation process. Its default value is `complete_area_list` meaning all the areas in the complete_area_list will be actually simulated. <br>
complete_area_list = ['V1', 'V2', 'VP', 'V3', 'V3A', 'MT', 'V4t', 'V4', 'VOT', 'MSTd', 'PIP', 'PO', 'DP', 'MIP', 'MDP', 'VIP', 'LIP', 'PITv', 'PITd', 'MSTl', 'CITv', 'CITd', 'FEF', 'TF', 'AITv', 'FST', '7a', 'STPp', 'STPa', '46', 'AITd', 'TH'] <br> complete_area_list = ['V1', 'V2', 'VP', 'V3', 'V3A', 'MT', 'V4t', 'V4', 'VOT', 'MSTd', 'PIP', 'PO', 'DP', 'MIP', 'MDP', 'VIP', 'LIP', 'PITv', 'PITd', 'MSTl', 'CITv', 'CITd', 'FEF', 'TF', 'AITv', 'FST', '7a', 'STPp', 'STPa', '46', 'AITd', 'TH'] <br>
The value assigned to simulation_areas can be any sublist of the compete_area_list specifying areas a user want to include in his/her simulation. <br> The value assigned to simulation_areas can be any sublist of the compete_area_list specifying areas a user want to include in his/her simulation. <br>
4. `replace_non_simulated_areas` <br> 4. `replace_non_simulated_areas` <br>
The paramter `replace_non_simulated_areas` defines how non-simulated areas will be replaced. <br> It's set as `None` by default when the parameter areas_simulated is set as full_area_list where all areas will be simulated so that no areas need to be replaced. <br> Other options are: `'hom_poisson_stat'`, `'het_poisson_stat'`, and `'het_current_nonstat'`. `'hom_poisson_stat'` is a manually set parameter which can be tuned. When it's set as 'het_poisson_stat' or 'het_current_nonstat', the data to replace the cortico-cortical input is loaded from 'replace_cc_input_source' which is the firing rates of our full scale simulation results. The differenc between 'het_poisson_stat' and 'het_current_nonstat' is that 'het_poisson_stat' is the mean of the time-series firing rate so that it's static, yet 'het_current_nonstat' is time-varying specific current, which is varying by time. The paramter `replace_non_simulated_areas` defines how non-simulated areas will be replaced. <br> It's set as `None` by default when the parameter areas_simulated is set as full_area_list where all areas will be simulated so that no areas need to be replaced. <br> Other options are: `'hom_poisson_stat'`, `'het_poisson_stat'`, and `'het_current_nonstat'`. `'hom_poisson_stat'` is a manually set parameter which can be tuned. When it's set as 'het_poisson_stat' or 'het_current_nonstat', the data to replace the cortico-cortical input is loaded from 'replace_cc_input_source' which is the firing rates of our full scale simulation results. The differenc between 'het_poisson_stat' and 'het_current_nonstat' is that 'het_poisson_stat' is the mean of the time-series firing rate so that it's static, yet 'het_current_nonstat' is time-varying specific current, which is varying by time.
%% Cell type:code id:60265d52 tags: %% Cell type:code id:60265d52 tags:
``` python ``` python
# Downscaling factor # Downscaling factor
# Value range/options: (0, 1.] # Value range/options: (0, 1.]
# Value assgined: 0.005 # Value assgined: 0.005
scale_down_to = 0.005 # Change it to 1. for running the fullscale network scale_down_to = 0.005 # Change it to 1. for running the fullscale network
# Scaling factor for cortico-cortical connections (chi) # Scaling factor for cortico-cortical connections (chi)
# Value range/options: [1., 2.5] # Value range/options: [1., 2.5]
# Value assgined: 1.0 # Value assgined: 1.0
cc_weights_factor = 1.0 cc_weights_factor = 1.0
# Cortical areas included in the simulation # Cortical areas included in the simulation
# Value range/options: any sublist of complete_ares_list # Value range/options: any sublist of complete_ares_list
# Value assgined: complete_ares_list # Value assgined: complete_ares_list
areas_simulated = ['V1', 'V2', 'VP', 'V3', 'V3A', 'MT', 'V4t', 'V4', 'VOT', 'MSTd', 'PIP', 'PO', 'DP', 'MIP', 'MDP', 'VIP', 'LIP', 'PITv', 'PITd', 'MSTl', 'CITv', 'CITd', 'FEF', 'TF', 'AITv', 'FST', '7a', 'STPp', 'STPa', '46', 'AITd', 'TH'] areas_simulated = ['V1', 'V2', 'VP', 'V3', 'V3A', 'MT', 'V4t', 'V4', 'VOT', 'MSTd', 'PIP', 'PO', 'DP', 'MIP', 'MDP', 'VIP', 'LIP', 'PITv', 'PITd', 'MSTl', 'CITv', 'CITd', 'FEF', 'TF', 'AITv', 'FST', '7a', 'STPp', 'STPa', '46', 'AITd', 'TH']
# Firing rates used to replace the non-simulated areas # Firing rates used to replace the non-simulated areas
# Value range/options: None, 'hom_poisson_stat', 'het_poisson_stat', 'het_current_nonstat' # Value range/options: None, 'hom_poisson_stat', 'het_poisson_stat', 'het_current_nonstat'
# Value assgined: 'het_poisson_stat' # Value assgined: 'het_poisson_stat'
replace_non_simulated_areas = 'het_poisson_stat' replace_non_simulated_areas = 'het_poisson_stat'
``` ```
%% Cell type:markdown id:de11b07f tags: %% Cell type:markdown id:de11b07f tags:
### 1.2. Default parameters <a class="anchor" id="section_1_2"></a> ### 1.2. Default parameters <a class="anchor" id="section_1_2"></a>
We try our best not to confuse users with too many parameters. However, if you want to change more parameters and explore the model, you can do so by passing a dictionary to the `default_params` argument of the `MultiAreaModel` class. We try our best not to confuse users with too many parameters. However, if you want to change more parameters and explore the model, you can do so by passing a dictionary to the `default_params` argument of the `MultiAreaModel` class.
%% Cell type:code id:6e4bed8d tags: %% Cell type:code id:6e4bed8d tags:
``` python ``` python
# Connection parameters # Connection parameters
conn_params = { conn_params = {
'replace_non_simulated_areas': 'het_poisson_stat', # Whether to replace non-simulated areas by Poisson sources with the same global rate, by default: None 'replace_non_simulated_areas': 'het_poisson_stat', # Whether to replace non-simulated areas by Poisson sources with the same global rate, by default: None
'g': -11., # It sets the relative inhibitory synaptic strength, by default: -16. 'g': -11., # It sets the relative inhibitory synaptic strength, by default: -16.
'K_stable': 'K_stable.npy', # Whether to apply the stabilization method of Schuecker, Schmidt et al. (2017), by default: None 'K_stable': 'K_stable.npy', # Whether to apply the stabilization method of Schuecker, Schmidt et al. (2017), by default: None
'fac_nu_ext_TH': 1.2, # Increase the external input to 2/3E and 5E in area TH 'fac_nu_ext_TH': 1.2, # Increase the external input to 2/3E and 5E in area TH
'fac_nu_ext_5E': 1.125, # Increase the external Poisson indegree onto 5E 'fac_nu_ext_5E': 1.125, # Increase the external Poisson indegree onto 5E
'fac_nu_ext_6E': 1.41666667, # Increase the external Poisson indegree onto 6E 'fac_nu_ext_6E': 1.41666667, # Increase the external Poisson indegree onto 6E
'av_indegree_V1': 3950. # Adjust the average indegree in V1 based on monkey data 'av_indegree_V1': 3950. # Adjust the average indegree in V1 based on monkey data
} }
# Input parameters # Input parameters
input_params = { input_params = {
'rate_ext': 10. # Rate of the Poissonian spike generator (in spikes/s) 'rate_ext': 10. # Rate of the Poissonian spike generator (in spikes/s)
} }
# Neuron parameters # Neuron parameters
neuron_params = { neuron_params = {
'V0_mean': -150., # Mean for the distribution of initial membrane potentials, by default: -100. 'V0_mean': -150., # Mean for the distribution of initial membrane potentials, by default: -100.
'V0_sd': 50.} # Standard deviation for the distribution of initial membrane potentials, by default: 50. 'V0_sd': 50.} # Standard deviation for the distribution of initial membrane potentials, by default: 50.
# Network parameters # Network parameters
network_params = { network_params = {
'N_scaling': scale_down_to, # Scaling of population sizes, by default: 1. 'N_scaling': scale_down_to, # Scaling of population sizes, by default: 1.
'K_scaling': scale_down_to, # Scaling of indegrees, by default: 1. 'K_scaling': scale_down_to, # Scaling of indegrees, by default: 1.
'fullscale_rates': 'tests/fullscale_rates.json', # Absolute path to the file holding full-scale rates for scaling synaptic weights, by default: None 'fullscale_rates': 'tests/fullscale_rates.json', # Absolute path to the file holding full-scale rates for scaling synaptic weights, by default: None
'input_params': input_params, # Input parameters 'input_params': input_params, # Input parameters
'connection_params': conn_params, # Connection parameters 'connection_params': conn_params, # Connection parameters
'neuron_params': neuron_params # Neuron parameters 'neuron_params': neuron_params # Neuron parameters
} }
# Simulation parameters # Simulation parameters
sim_params = { sim_params = {
'areas_simulated': areas_simulated, 'areas_simulated': areas_simulated,
't_sim': 2000., # Simulated time (in ms), by default: 10.0 't_sim': 2000., # Simulated time (in ms), by default: 10.0
# 't_sim': 1500., # Simulated time (in ms), by default: 10.0 # 't_sim': 1500., # Simulated time (in ms), by default: 10.0
'num_processes': 1, # The number of MPI processes, by default: 1 'num_processes': 1, # The number of MPI processes, by default: 1
'local_num_threads': 1, # The number of threads per MPI process, by default: 1 'local_num_threads': 1, # The number of threads per MPI process, by default: 1
'recording_dict': {'record_vm': False}, 'recording_dict': {'record_vm': False},
'rng_seed': 1 # global random seed 'rng_seed': 1 # global random seed
} }
# Theory paramters (theory_params) # Theory paramters (theory_params)
theory_params = { theory_params = {
'dt': 0.1 # The time step of the mean-field theory integration, by default: 0.01 'dt': 0.1 # The time step of the mean-field theory integration, by default: 0.01
} }
``` ```
%% Cell type:markdown id:1472e9c5 tags: %% Cell type:markdown id:1472e9c5 tags:
Go back to [Notebook structure](#toc) Go back to [Notebook structure](#toc)
%% Cell type:markdown id:de4a6703 tags: %% Cell type:markdown id:de4a6703 tags:
## S2. Multi-Area Model Instantiation and Simulation <a class="anchor" id="section_2"></a> ## S2. Multi-Area Model Instantiation and Simulation <a class="anchor" id="section_2"></a>
%% Cell type:markdown id:1fd58841 tags: %% Cell type:markdown id:1fd58841 tags:
### 2.1. Insantiate a multi-area model <a class="anchor" id="section_2_1"></a> ### 2.1. Insantiate a multi-area model <a class="anchor" id="section_2_1"></a>
%% Cell type:code id:ab25f9f8 tags: %% Cell type:code id:ab25f9f8 tags:
``` python ``` python
%%capture captured %%capture captured
M = MultiAreaModel(network_params, M = MultiAreaModel(network_params,
simulation=True, simulation=True,
sim_spec=sim_params, sim_spec=sim_params,
theory=True, theory=True,
theory_spec=theory_params); theory_spec=theory_params);
``` ```
%% Output %% Output
Error in library("aod") : there is no package called ‘aod’ Error in library("aod") : there is no package called ‘aod’
Execution halted Execution halted
%% Cell type:markdown id:91649c30 tags: %% Cell type:markdown id:91649c30 tags:
### 2.2. Predict firing rates from theory <a class="anchor" id="section_2_2"></a> ### 2.2. Predict firing rates from theory <a class="anchor" id="section_2_2"></a>
%% Cell type:code id:6a7ddf0e tags: %% Cell type:code id:6a7ddf0e tags:
``` python ``` python
p, r = M.theory.integrate_siegert() p, r = M.theory.integrate_siegert()
print("Mean-field theory predicts an average " print("Mean-field theory predicts an average "
"firing rate of {0:.3f} spikes/s across all populations.".format(np.mean(r[:, -1]))) "firing rate of {0:.3f} spikes/s across all populations.".format(np.mean(r[:, -1])))
``` ```
%% Output %% Output
Iteration: 0 Iteration: 0
Mean-field theory predicts an average firing rate of 29.588 spikes/s across all populations. Mean-field theory predicts an average firing rate of 29.588 spikes/s across all populations.
%% Cell type:markdown id:2062ddf3 tags: %% Cell type:markdown id:2062ddf3 tags:
### 2.3. Extract and visualize interareal connectivity <a class="anchor" id="section_2_3"></a> ### 2.3. Extract and visualize interareal connectivity <a class="anchor" id="section_2_3"></a>
%% Cell type:markdown id:8a7c09e0 tags: %% Cell type:markdown id:8a7c09e0 tags:
The connectivity and neuron numbers are stored in the attributes of the model class. Neuron numbers are stored in `M.N` as a dictionary (and in `M.N_vec` as an array), indegrees in `M.K` as a dictionary (and in `M.K_matrix` as an array). Number of synapses can also be access via `M.synapses` (and in `M.syn_matrix` as an array). <br> The connectivity and neuron numbers are stored in the attributes of the model class. Neuron numbers are stored in `M.N` as a dictionary (and in `M.N_vec` as an array), indegrees in `M.K` as a dictionary (and in `M.K_matrix` as an array). Number of synapses can also be access via `M.synapses` (and in `M.syn_matrix` as an array). <br>
%% Cell type:code id:6316ac24 tags: %% Cell type:code id:6316ac24 tags:
``` python ``` python
# Neuron numbers # Neuron numbers
# Dictionary of neuron numbers # Dictionary of neuron numbers
# M.N # M.N
# Array of neuron numbers # Array of neuron numbers
# M.N_vec # M.N_vec
``` ```
%% Cell type:code id:8408d463-557b-481b-afc1-5fbbbd67306d tags: %% Cell type:code id:8408d463-557b-481b-afc1-5fbbbd67306d tags:
``` python ``` python
# Indegrees # Indegrees
# Dictionary of nodes indegrees organized as: # Dictionary of nodes indegrees organized as:
# {<source_area>: {<source_pop>: {<target_area>: {<target_pop>: indegree_values}}}} # {<source_area>: {<source_pop>: {<target_area>: {<target_pop>: indegree_values}}}}
# M.K # M.K
# Array of nodes indegrees # Array of nodes indegrees
# M.K_matrix.shape # M.K_matrix.shape
``` ```
%% Cell type:code id:445a722a tags: %% Cell type:code id:445a722a tags:
``` python ``` python
# Synapses # Synapses
# Dictionary of synapses that target neurons receive, it is organized as: # Dictionary of synapses that target neurons receive, it is organized as:
# {<source_area>: {<source_pop>: {<target_area>: {<target_pop>: number_of_synapses}}}} # {<source_area>: {<source_pop>: {<target_area>: {<target_pop>: number_of_synapses}}}}
# M.synapses # M.synapses
# Array of # Array of
# M.syn_matrix # M.syn_matrix
``` ```
%% Cell type:code id:05512922-26e5-425f-90a4-0df7c2279ccf tags: %% Cell type:code id:05512922-26e5-425f-90a4-0df7c2279ccf tags:
``` python ``` python
%%capture captured %%capture captured
# from M2E_visualize_interareal_connectivity import visualize_interareal_connectivity # from M2E_visualize_interareal_connectivity import visualize_interareal_connectivity
# visualize_interareal_connectivity(M) # visualize_interareal_connectivity(M)
``` ```
%% Cell type:markdown id:bae85d86-157c-47a2-9826-860b410a440e tags: %% Cell type:markdown id:bae85d86-157c-47a2-9826-860b410a440e tags:
Based on: <br> Full-scale interareal connectivity is from: <br>
Schmidt M, Bakker R, Hilgetag CC, Diesmann M & van Albada SJ <br> Schmidt M, Bakker R, Hilgetag CC, Diesmann M & van Albada SJ <br>
Multi-scale account of the network structure of macaque visual cortex <br> Multi-scale account of the network structure of macaque visual cortex <br>
Brain Structure and Function (2018), 223: 1409 [https://doi.org/10.1007/s00429-017-1554-4](https://doi.org/10.1007/s00429-017-1554-4) <br> Brain Structure and Function (2018), 223: 1409 [https://doi.org/10.1007/s00429-017-1554-4](https://doi.org/10.1007/s00429-017-1554-4) <br>
Fig 4. D **Area-level connectivity of the model, based on data in a–c, expressed as relative indegrees for each target area** Fig 4. D **Area-level connectivity of the model, based on data in a–c, expressed as relative indegrees for each target area**
%% Cell type:markdown id:e67f37e9-ec8d-4bb1-bd21-45e966f47ab6 tags: %% Cell type:markdown id:e67f37e9-ec8d-4bb1-bd21-45e966f47ab6 tags:
Go back to [Notebook structure](#toc) Go back to [Notebook structure](#toc)
%% Cell type:markdown id:0c1cad59-81d0-4e24-ac33-13c4ca8c6dec tags: %% Cell type:markdown id:0c1cad59-81d0-4e24-ac33-13c4ca8c6dec tags:
### 2.4. Run a simulation <a class="anchor" id="section_2_4"></a> ### 2.4. Run a simulation <a class="anchor" id="section_2_4"></a>
%% Cell type:code id:15778e9c tags: %% Cell type:code id:15778e9c tags:
``` python ``` python
%%capture captured %%capture captured
# run the simulation, depending on the model parameter and downscale ratio, the running time varies largely. # run the simulation, depending on the model parameter and downscale ratio, the running time varies largely.
M.simulation.simulate() M.simulation.simulate()
``` ```
%% Cell type:markdown id:fd6e3232 tags: %% Cell type:markdown id:fd6e3232 tags:
Go back to [Notebook structure](#toc) Go back to [Notebook structure](#toc)
%% Cell type:markdown id:bb71c922 tags: %% Cell type:markdown id:bb71c922 tags:
## S3. Simulation Results Visualziation <a class="anchor" id="section_3"></a> ## S3. Simulation Results Visualziation <a class="anchor" id="section_3"></a>
%% Cell type:markdown id:38ddd973 tags: %% Cell type:markdown id:38ddd973 tags:
### 3.1. Instantaneous and mean firing rate across all populations <a class="anchor" id="section_3_1"></a> ### 3.1. Instantaneous and mean firing rate across all populations <a class="anchor" id="section_3_1"></a>
%% Cell type:code id:bea30fc8 tags: %% Cell type:code id:bea30fc8 tags:
``` python ``` python
from M2E_visualize_instantaneous_and_mean_firing_rates import plot_instan_mean_firing_rate from M2E_visualize_instantaneous_and_mean_firing_rates import plot_instan_mean_firing_rate
plot_instan_mean_firing_rate(M) plot_instan_mean_firing_rate(M)
``` ```
%% Output %% Output
%% Cell type:markdown id:e91c436e-db94-4cd7-a531-29c032efeeae tags: %% Cell type:markdown id:e91c436e-db94-4cd7-a531-29c032efeeae tags:
### 3.2 Resting state plots <a class="anchor" id="section_3_2"></a> ### 3.2 Resting state plots <a class="anchor" id="section_3_2"></a>
%% Cell type:markdown id:aeae56a4 tags: %% Cell type:markdown id:aeae56a4 tags:
**Fig 5. Resting state of the model with χ =1.9.** (A-C) Raster plot of spiking activity of 3% of the neurons in area V1 (A), V2 (B), and FEF (C). Blue: excitatory neurons, red: inhibitory neurons. (D-F) Spiking statistics across all 32 areas for the respective populations shown as area-averaged box plots. Crosses: medians, boxes: interquartile range (IQR), whiskers extend to the most extremeobservat ions within 1.5×IQR beyond the IQR. (D) Population-averaged firing rates. (E) Average pairwise correlation coefficients of spiking activity. (F) Irregularity measured by revised local variation LvR averaged across neurons. (G) Area-averaged firing rates, shown as raw binned spike histograms with 1ms bin width (gray) and convolved histograms, with aGaussian kernel (black) of optimal width. **Fig 5. Resting state of the model with χ =1.9.** (A-C) Raster plot of spiking activity of 3% of the neurons in area V1 (A), V2 (B), and FEF (C). Blue: excitatory neurons, red: inhibitory neurons. (D-F) Spiking statistics across all 32 areas for the respective populations shown as area-averaged box plots. Crosses: medians, boxes: interquartile range (IQR), whiskers extend to the most extremeobservat ions within 1.5×IQR beyond the IQR. (D) Population-averaged firing rates. (E) Average pairwise correlation coefficients of spiking activity. (F) Irregularity measured by revised local variation LvR averaged across neurons. (G) Area-averaged firing rates, shown as raw binned spike histograms with 1ms bin width (gray) and convolved histograms, with aGaussian kernel (black) of optimal width.
%% Cell type:code id:ae19bcc3 tags: %% Cell type:code id:ae19bcc3 tags:
``` python ``` python
from M2E_visualize_resting_state import plot_resting_state from M2E_visualize_resting_state import plot_resting_state
plot_resting_state(M, data_path) plot_resting_state(M, data_path)
``` ```
%% Output %% Output
--------------------------------------------------------------------------- ---------------------------------------------------------------------------
NameError Traceback (most recent call last) TypeError Traceback (most recent call last)
Cell In [16], line 2 Cell In [18], line 2
1 from M2E_visualize_resting_state import plot_resting_state 1 from M2E_visualize_resting_state import plot_resting_state
----> 2 plot_resting_state(M, A, label_spikes, data_path) ----> 2 plot_resting_state(M, data_path)
NameError: name 'A' is not defined TypeError: plot_resting_state() missing 1 required positional argument: 'data_path'
%% Cell type:markdown id:473d0882-8e45-4330-bfa2-2c7e1af0dac4 tags: %% Cell type:markdown id:473d0882-8e45-4330-bfa2-2c7e1af0dac4 tags:
### 3.3 Time-averaged population rates <a class="anchor" id="section_4_3"></a> ### 3.3 Time-averaged population rates <a class="anchor" id="section_4_3"></a>
An overview over time-averaged population rates encoded in colors with areas along x-axis and populations along y-axis. An overview over time-averaged population rates encoded in colors with areas along x-axis and populations along y-axis.
%% Cell type:code id:721d1f03-df25-468d-8075-a807025a9c58 tags: %% Cell type:code id:721d1f03-df25-468d-8075-a807025a9c58 tags:
``` python ``` python
# %%capture captured # %%capture captured
A.show_rates() A.show_rates()
``` ```
%% Output
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In [19], line 2
1 # %%capture captured
----> 2 A.show_rates()
NameError: name 'A' is not defined
%% Cell type:code id:5b40db5d-51b2-4d16-b36b-9f1995452b05 tags: %% Cell type:code id:5b40db5d-51b2-4d16-b36b-9f1995452b05 tags:
``` python ``` python
|Index|0|1|2|3|4|5|6|7| |Index|0|1|2|3|4|5|6|7|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
``` ```
%% Output
Cell In [20], line 1
|Index|0|1|2|3|4|5|6|7|
^
SyntaxError: invalid syntax
%% Cell type:markdown id:b03d44e8-2216-44ff-ada4-83e9c3e6d30a tags: %% Cell type:markdown id:b03d44e8-2216-44ff-ada4-83e9c3e6d30a tags:
|Index|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31| |Index|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|Area |V1|V2|VP|V3|PIP|V3A|MT|V4t|V4|PO|VOT|DP|MIP|MDP|MSTd|VIP|LIP|PITv|PITd|AITv|MSTl|FST|CITv|CITd|7a|STPp|STPa|FEF|46|TF|TH|AITd| |Area |V1|V2|VP|V3|PIP|V3A|MT|V4t|V4|PO|VOT|DP|MIP|MDP|MSTd|VIP|LIP|PITv|PITd|AITv|MSTl|FST|CITv|CITd|7a|STPp|STPa|FEF|46|TF|TH|AITd|
%% Cell type:markdown id:ef74ca3e-98dc-49c9-a4a0-2c640e29b1d9 tags: %% Cell type:markdown id:ef74ca3e-98dc-49c9-a4a0-2c640e29b1d9 tags:
Go back to [Notebook structure](#toc) Go back to [Notebook structure](#toc)
......
%% Cell type:markdown id:b1331599 tags: %% Cell type:markdown id:b1331599 tags:
# Down-scaled multi-area model # Down-scaled multi-area model
%% Cell type:markdown id:b952d0ea tags: %% Cell type:markdown id:b952d0ea tags:
#### Notebook structure <a class="anchor" id="toc"></a> #### Notebook structure <a class="anchor" id="toc"></a>
* [S0. Configuration](#section_0) * [S0. Configuration](#section_0)
* [S1. Parameterization](#section_1) * [S1. Parameterization](#section_1)
* [1.1. Parameters to tune](#section_1_1) * [1.1. Parameters to tune](#section_1_1)
* [1.2. Default parameters](#section_1_2) * [1.2. Default parameters](#section_1_2)
* [S2. Multi-Area Model Instantiation and Simulation](#section_2) * [S2. Multi-Area Model Instantiation and Simulation](#section_2)
* [2.1. Insantiate a multi-area model](#section_2_1) * [2.1. Insantiate a multi-area model](#section_2_1)
* [2.2. Predict firing rates from theory](#section_2_2) * [2.2. Predict firing rates from theory](#section_2_2)
* [2.3. Extract and visualize interareal connectivity](#section_2_3) * [2.3. Extract and visualize interareal connectivity](#section_2_3)
* [2.4. Run a simulation](#section_2_4) * [2.4. Run a simulation](#section_2_4)
* [S3. Simulation Results Visualization](#section_3) * [S3. Simulation Results Visualization](#section_3)
* [3.1. Instantaneous and mean firing rate across all populations](#section_3_1) * [3.1. Instantaneous and mean firing rate across all populations](#section_3_1)
* [3.2. Resting state plots](#section_3_2) * [3.2. Resting state plots](#section_3_2)
* [3.3. Time-averaged population rates](#section_3_3) * [3.3. Time-averaged population rates](#section_3_3)
%% Cell type:markdown id:d782e527 tags: %% Cell type:markdown id:d782e527 tags:
## S0. Configuration <a class="anchor" id="section_0"></a> ## S0. Configuration <a class="anchor" id="section_0"></a>
%% Cell type:code id:9d6cc7d9-3110-4d96-9f9a-9ec7dee6d145 tags: %% Cell type:code id:9d6cc7d9-3110-4d96-9f9a-9ec7dee6d145 tags:
``` python ``` python
# Create config file # Create config file
with open('config.py', 'w') as fp: with open('config.py', 'w') as fp:
fp.write( fp.write(
'''import os '''import os
base_path = os.path.abspath(".") base_path = os.path.abspath(".")
data_path = os.path.abspath("simulations") data_path = os.path.abspath("simulations")
jobscript_template = "python {base_path}/run_simulation.py {label}" jobscript_template = "python {base_path}/run_simulation.py {label}"
submit_cmd = "bash -c" submit_cmd = "bash -c"
''') ''')
``` ```
%% Cell type:code id:96517739 tags: %% Cell type:code id:96517739 tags:
``` python ``` python
%matplotlib inline %matplotlib inline
import numpy as np import numpy as np
import os import os
import nest import nest
import json import json
import sys import sys
from IPython.display import display, HTML from IPython.display import display, HTML
from multiarea_model import MultiAreaModel from multiarea_model import MultiAreaModel
from config import base_path, data_path from config import base_path, data_path
sys.path.append('./figures/MAM2EBRAINS') sys.path.append('./figures/MAM2EBRAINS')
``` ```
%% Output %% Output
-- N E S T -- -- N E S T --
Copyright (C) 2004 The NEST Initiative Copyright (C) 2004 The NEST Initiative
Version: 3.5 Version: 3.5
Built: Jul 12 2023 06:25:27 Built: Jul 12 2023 06:25:27
This program is provided AS IS and comes with This program is provided AS IS and comes with
NO WARRANTY. See the file LICENSE for details. NO WARRANTY. See the file LICENSE for details.
Problems or suggestions? Problems or suggestions?
Visit https://www.nest-simulator.org Visit https://www.nest-simulator.org
Type 'nest.help()' to find out more about NEST. Type 'nest.help()' to find out more about NEST.
%% Cell type:code id:7e07b0d0 tags: %% Cell type:code id:7e07b0d0 tags:
``` python ``` python
%%capture captured %%capture captured
!pip install nested_dict dicthash !pip install nested_dict dicthash
``` ```
%% Cell type:code id:1d440c07-9b69-4e52-8573-26b13493bc5a tags: %% Cell type:code id:1d440c07-9b69-4e52-8573-26b13493bc5a tags:
``` python ``` python
# Jupyter notebook display format setting # Jupyter notebook display format setting
style = """ style = """
<style> <style>
table {float:left} table {float:left}
</style> </style>
""" """
display(HTML(style)) display(HTML(style))
``` ```
%% Output %% Output
%% Cell type:markdown id:27160ba8 tags: %% Cell type:markdown id:27160ba8 tags:
Go back to [Notebook structure](#toc) Go back to [Notebook structure](#toc)
%% Cell type:markdown id:df83f5ea-1c4b-44d3-9926-01786aa46e14 tags: %% Cell type:markdown id:df83f5ea-1c4b-44d3-9926-01786aa46e14 tags:
## S1. Parameterization <a class="anchor" id="section_1"></a> ## S1. Parameterization <a class="anchor" id="section_1"></a>
%% Cell type:markdown id:30655817 tags: %% Cell type:markdown id:30655817 tags:
### 1.1. Parameters to tune <a class="anchor" id="section_1_1"></a> ### 1.1. Parameters to tune <a class="anchor" id="section_1_1"></a>
%% Cell type:markdown id:4f67c1ba tags: %% Cell type:markdown id:4f67c1ba tags:
|Parameter|Default value|Value range/options|Value assigned|Description| |Parameter|Default value|Value range/options|Value assigned|Description|
|:-------:|:-----------:|:-----------------:|:------------:|:---------:| |:-------:|:-----------:|:-----------------:|:------------:|:---------:|
|scale_down_to|1. |(0, 1.0] |0.005 |$^1$ | |scale_down_to|1. |(0, 1.0] |0.005 |$^1$ |
|cc_weights_factor|1. |[1.0, 2.5] |1. |$^2$ | |cc_weights_factor|1. |[1.0, 2.5] |1. |$^2$ |
|areas_simulated|complete_area_list|Sublists of complete_area_list|complete_area_list|$^3$| |areas_simulated|complete_area_list|Sublists of complete_area_list|complete_area_list|$^3$|
|replace_non_simulated_areas|None|None, 'hom_poisson_stat', 'het_poisson_stat', 'het_current_nonstat'|'het_poisson_stat'|$^4$ | |replace_non_simulated_areas|None|None, 'hom_poisson_stat', 'het_poisson_stat', 'het_current_nonstat'|'het_poisson_stat'|$^4$ |
%% Cell type:markdown id:a2161477 tags: %% Cell type:markdown id:a2161477 tags:
1. `scale_down_to` <br> 1. `scale_down_to` <br>
`scale_down_to` is the down-scaling factor which defines the the ratio of the full scale multi-area model being down-scaled to a model with fewer neurons and indegrees so as to be simulated on machines with lower computational ability and the simulation results can be obtained within relative shorter period of time. <br> Its deafualt value if `1.` meaning full scale simulation. <br> In the pre-set downscale version, it's set as `0.005`, where the numer of neurons and indegrees are both scaled down to 0.5% of its full scale amount, where the model can usually be simulated on a local machine. <br> **Warning**: This will not yield reasonable dynamical results from the network and is only meant to demonstrate the simulation workflow <br> `scale_down_to` is the down-scaling factor which defines the the ratio of the full scale multi-area model being down-scaled to a model with fewer neurons and indegrees so as to be simulated on machines with lower computational ability and the simulation results can be obtained within relative shorter period of time. <br> Its deafualt value if `1.` meaning full scale simulation. <br> In the pre-set downscale version, it's set as `0.005`, where the numer of neurons and indegrees are both scaled down to 0.5% of its full scale amount, where the model can usually be simulated on a local machine. <br> **Warning**: This will not yield reasonable dynamical results from the network and is only meant to demonstrate the simulation workflow <br>
2. `cc_weights_factor` <br> 2. `cc_weights_factor` <br>
This scaling factor controls the cortico-cortical synaptic strength. <br> By default it's set as `1.0`, where the inter-area synaptic strength is the same as the intra-areal. <br> **Important**: This factor changes the network activity from ground state to metastable state. <br> This scaling factor controls the cortico-cortical synaptic strength. <br> By default it's set as `1.0`, where the inter-area synaptic strength is the same as the intra-areal. <br> **Important**: This factor changes the network activity from ground state to metastable state. <br>
3. `areas_simulated` <br> 3. `areas_simulated` <br>
This parameter specifies the cortical areas included in the simulation process. Its default value is `complete_area_list` meaning all the areas in the complete_area_list will be actually simulated. <br> This parameter specifies the cortical areas included in the simulation process. Its default value is `complete_area_list` meaning all the areas in the complete_area_list will be actually simulated. <br>
complete_area_list = ['V1', 'V2', 'VP', 'V3', 'V3A', 'MT', 'V4t', 'V4', 'VOT', 'MSTd', 'PIP', 'PO', 'DP', 'MIP', 'MDP', 'VIP', 'LIP', 'PITv', 'PITd', 'MSTl', 'CITv', 'CITd', 'FEF', 'TF', 'AITv', 'FST', '7a', 'STPp', 'STPa', '46', 'AITd', 'TH'] <br> complete_area_list = ['V1', 'V2', 'VP', 'V3', 'V3A', 'MT', 'V4t', 'V4', 'VOT', 'MSTd', 'PIP', 'PO', 'DP', 'MIP', 'MDP', 'VIP', 'LIP', 'PITv', 'PITd', 'MSTl', 'CITv', 'CITd', 'FEF', 'TF', 'AITv', 'FST', '7a', 'STPp', 'STPa', '46', 'AITd', 'TH'] <br>
The value assigned to simulation_areas can be any sublist of the compete_area_list specifying areas a user want to include in his/her simulation. <br> The value assigned to simulation_areas can be any sublist of the compete_area_list specifying areas a user want to include in his/her simulation. <br>
4. `replace_non_simulated_areas` <br> 4. `replace_non_simulated_areas` <br>
The paramter `replace_non_simulated_areas` defines how non-simulated areas will be replaced. <br> It's set as `None` by default when the parameter areas_simulated is set as full_area_list where all areas will be simulated so that no areas need to be replaced. <br> Other options are: `'hom_poisson_stat'`, `'het_poisson_stat'`, and `'het_current_nonstat'`. `'hom_poisson_stat'` is a manually set parameter which can be tuned. When it's set as 'het_poisson_stat' or 'het_current_nonstat', the data to replace the cortico-cortical input is loaded from 'replace_cc_input_source' which is the firing rates of our full scale simulation results. The differenc between 'het_poisson_stat' and 'het_current_nonstat' is that 'het_poisson_stat' is the mean of the time-series firing rate so that it's static, yet 'het_current_nonstat' is time-varying specific current, which is varying by time. The paramter `replace_non_simulated_areas` defines how non-simulated areas will be replaced. <br> It's set as `None` by default when the parameter areas_simulated is set as full_area_list where all areas will be simulated so that no areas need to be replaced. <br> Other options are: `'hom_poisson_stat'`, `'het_poisson_stat'`, and `'het_current_nonstat'`. `'hom_poisson_stat'` is a manually set parameter which can be tuned. When it's set as 'het_poisson_stat' or 'het_current_nonstat', the data to replace the cortico-cortical input is loaded from 'replace_cc_input_source' which is the firing rates of our full scale simulation results. The differenc between 'het_poisson_stat' and 'het_current_nonstat' is that 'het_poisson_stat' is the mean of the time-series firing rate so that it's static, yet 'het_current_nonstat' is time-varying specific current, which is varying by time.
%% Cell type:code id:60265d52 tags: %% Cell type:code id:60265d52 tags:
``` python ``` python
# Downscaling factor # Downscaling factor
# Value range/options: (0, 1.] # Value range/options: (0, 1.]
# Value assgined: 0.005 # Value assgined: 0.005
scale_down_to = 0.005 # Change it to 1. for running the fullscale network scale_down_to = 0.005 # Change it to 1. for running the fullscale network
# Scaling factor for cortico-cortical connections (chi) # Scaling factor for cortico-cortical connections (chi)
# Value range/options: [1., 2.5] # Value range/options: [1., 2.5]
# Value assgined: 1.0 # Value assgined: 1.0
cc_weights_factor = 1.0 cc_weights_factor = 1.0
# Cortical areas included in the simulation # Cortical areas included in the simulation
# Value range/options: any sublist of complete_ares_list # Value range/options: any sublist of complete_ares_list
# Value assgined: complete_ares_list # Value assgined: complete_ares_list
areas_simulated = ['V1', 'V2', 'VP', 'V3', 'V3A', 'MT', 'V4t', 'V4', 'VOT', 'MSTd', 'PIP', 'PO', 'DP', 'MIP', 'MDP', 'VIP', 'LIP', 'PITv', 'PITd', 'MSTl', 'CITv', 'CITd', 'FEF', 'TF', 'AITv', 'FST', '7a', 'STPp', 'STPa', '46', 'AITd', 'TH'] areas_simulated = ['V1', 'V2', 'VP', 'V3', 'V3A', 'MT', 'V4t', 'V4', 'VOT', 'MSTd', 'PIP', 'PO', 'DP', 'MIP', 'MDP', 'VIP', 'LIP', 'PITv', 'PITd', 'MSTl', 'CITv', 'CITd', 'FEF', 'TF', 'AITv', 'FST', '7a', 'STPp', 'STPa', '46', 'AITd', 'TH']
# Firing rates used to replace the non-simulated areas # Firing rates used to replace the non-simulated areas
# Value range/options: None, 'hom_poisson_stat', 'het_poisson_stat', 'het_current_nonstat' # Value range/options: None, 'hom_poisson_stat', 'het_poisson_stat', 'het_current_nonstat'
# Value assgined: 'het_poisson_stat' # Value assgined: 'het_poisson_stat'
replace_non_simulated_areas = 'het_poisson_stat' replace_non_simulated_areas = 'het_poisson_stat'
``` ```
%% Cell type:markdown id:de11b07f tags: %% Cell type:markdown id:de11b07f tags:
### 1.2. Default parameters <a class="anchor" id="section_1_2"></a> ### 1.2. Default parameters <a class="anchor" id="section_1_2"></a>
We try our best not to confuse users with too many parameters. However, if you want to change more parameters and explore the model, you can do so by passing a dictionary to the `default_params` argument of the `MultiAreaModel` class. We try our best not to confuse users with too many parameters. However, if you want to change more parameters and explore the model, you can do so by passing a dictionary to the `default_params` argument of the `MultiAreaModel` class.
%% Cell type:code id:6e4bed8d tags: %% Cell type:code id:6e4bed8d tags:
``` python ``` python
# Connection parameters # Connection parameters
conn_params = { conn_params = {
'replace_non_simulated_areas': 'het_poisson_stat', # Whether to replace non-simulated areas by Poisson sources with the same global rate, by default: None 'replace_non_simulated_areas': 'het_poisson_stat', # Whether to replace non-simulated areas by Poisson sources with the same global rate, by default: None
'g': -11., # It sets the relative inhibitory synaptic strength, by default: -16. 'g': -11., # It sets the relative inhibitory synaptic strength, by default: -16.
'K_stable': 'K_stable.npy', # Whether to apply the stabilization method of Schuecker, Schmidt et al. (2017), by default: None 'K_stable': 'K_stable.npy', # Whether to apply the stabilization method of Schuecker, Schmidt et al. (2017), by default: None
'fac_nu_ext_TH': 1.2, # Increase the external input to 2/3E and 5E in area TH 'fac_nu_ext_TH': 1.2, # Increase the external input to 2/3E and 5E in area TH
'fac_nu_ext_5E': 1.125, # Increase the external Poisson indegree onto 5E 'fac_nu_ext_5E': 1.125, # Increase the external Poisson indegree onto 5E
'fac_nu_ext_6E': 1.41666667, # Increase the external Poisson indegree onto 6E 'fac_nu_ext_6E': 1.41666667, # Increase the external Poisson indegree onto 6E
'av_indegree_V1': 3950. # Adjust the average indegree in V1 based on monkey data 'av_indegree_V1': 3950. # Adjust the average indegree in V1 based on monkey data
} }
# Input parameters # Input parameters
input_params = { input_params = {
'rate_ext': 10. # Rate of the Poissonian spike generator (in spikes/s) 'rate_ext': 10. # Rate of the Poissonian spike generator (in spikes/s)
} }
# Neuron parameters # Neuron parameters
neuron_params = { neuron_params = {
'V0_mean': -150., # Mean for the distribution of initial membrane potentials, by default: -100. 'V0_mean': -150., # Mean for the distribution of initial membrane potentials, by default: -100.
'V0_sd': 50.} # Standard deviation for the distribution of initial membrane potentials, by default: 50. 'V0_sd': 50.} # Standard deviation for the distribution of initial membrane potentials, by default: 50.
# Network parameters # Network parameters
network_params = { network_params = {
'N_scaling': scale_down_to, # Scaling of population sizes, by default: 1. 'N_scaling': scale_down_to, # Scaling of population sizes, by default: 1.
'K_scaling': scale_down_to, # Scaling of indegrees, by default: 1. 'K_scaling': scale_down_to, # Scaling of indegrees, by default: 1.
'fullscale_rates': 'tests/fullscale_rates.json', # Absolute path to the file holding full-scale rates for scaling synaptic weights, by default: None 'fullscale_rates': 'tests/fullscale_rates.json', # Absolute path to the file holding full-scale rates for scaling synaptic weights, by default: None
'input_params': input_params, # Input parameters 'input_params': input_params, # Input parameters
'connection_params': conn_params, # Connection parameters 'connection_params': conn_params, # Connection parameters
'neuron_params': neuron_params # Neuron parameters 'neuron_params': neuron_params # Neuron parameters
} }
# Simulation parameters # Simulation parameters
sim_params = { sim_params = {
'areas_simulated': areas_simulated, 'areas_simulated': areas_simulated,
't_sim': 2000., # Simulated time (in ms), by default: 10.0 't_sim': 2000., # Simulated time (in ms), by default: 10.0
# 't_sim': 1500., # Simulated time (in ms), by default: 10.0 # 't_sim': 1500., # Simulated time (in ms), by default: 10.0
'num_processes': 1, # The number of MPI processes, by default: 1 'num_processes': 1, # The number of MPI processes, by default: 1
'local_num_threads': 1, # The number of threads per MPI process, by default: 1 'local_num_threads': 1, # The number of threads per MPI process, by default: 1
'recording_dict': {'record_vm': False}, 'recording_dict': {'record_vm': False},
'rng_seed': 1 # global random seed 'rng_seed': 1 # global random seed
} }
# Theory paramters (theory_params) # Theory paramters (theory_params)
theory_params = { theory_params = {
'dt': 0.1 # The time step of the mean-field theory integration, by default: 0.01 'dt': 0.1 # The time step of the mean-field theory integration, by default: 0.01
} }
``` ```
%% Cell type:markdown id:1472e9c5 tags: %% Cell type:markdown id:1472e9c5 tags:
Go back to [Notebook structure](#toc) Go back to [Notebook structure](#toc)
%% Cell type:markdown id:de4a6703 tags: %% Cell type:markdown id:de4a6703 tags:
## S2. Multi-Area Model Instantiation and Simulation <a class="anchor" id="section_2"></a> ## S2. Multi-Area Model Instantiation and Simulation <a class="anchor" id="section_2"></a>
%% Cell type:markdown id:1fd58841 tags: %% Cell type:markdown id:1fd58841 tags:
### 2.1. Insantiate a multi-area model <a class="anchor" id="section_2_1"></a> ### 2.1. Insantiate a multi-area model <a class="anchor" id="section_2_1"></a>
%% Cell type:code id:ab25f9f8 tags: %% Cell type:code id:ab25f9f8 tags:
``` python ``` python
%%capture captured %%capture captured
M = MultiAreaModel(network_params, M = MultiAreaModel(network_params,
simulation=True, simulation=True,
sim_spec=sim_params, sim_spec=sim_params,
theory=True, theory=True,
theory_spec=theory_params); theory_spec=theory_params);
``` ```
%% Output %% Output
Error in library("aod") : there is no package called ‘aod’ Error in library("aod") : there is no package called ‘aod’
Execution halted Execution halted
%% Cell type:markdown id:91649c30 tags: %% Cell type:markdown id:91649c30 tags:
### 2.2. Predict firing rates from theory <a class="anchor" id="section_2_2"></a> ### 2.2. Predict firing rates from theory <a class="anchor" id="section_2_2"></a>
%% Cell type:code id:6a7ddf0e tags: %% Cell type:code id:6a7ddf0e tags:
``` python ``` python
p, r = M.theory.integrate_siegert() p, r = M.theory.integrate_siegert()
print("Mean-field theory predicts an average " print("Mean-field theory predicts an average "
"firing rate of {0:.3f} spikes/s across all populations.".format(np.mean(r[:, -1]))) "firing rate of {0:.3f} spikes/s across all populations.".format(np.mean(r[:, -1])))
``` ```
%% Output %% Output
Iteration: 0 Iteration: 0
Mean-field theory predicts an average firing rate of 29.588 spikes/s across all populations. Mean-field theory predicts an average firing rate of 29.588 spikes/s across all populations.
%% Cell type:markdown id:2062ddf3 tags: %% Cell type:markdown id:2062ddf3 tags:
### 2.3. Extract and visualize interareal connectivity <a class="anchor" id="section_2_3"></a> ### 2.3. Extract and visualize interareal connectivity <a class="anchor" id="section_2_3"></a>
%% Cell type:markdown id:8a7c09e0 tags: %% Cell type:markdown id:8a7c09e0 tags:
The connectivity and neuron numbers are stored in the attributes of the model class. Neuron numbers are stored in `M.N` as a dictionary (and in `M.N_vec` as an array), indegrees in `M.K` as a dictionary (and in `M.K_matrix` as an array). Number of synapses can also be access via `M.synapses` (and in `M.syn_matrix` as an array). <br> The connectivity and neuron numbers are stored in the attributes of the model class. Neuron numbers are stored in `M.N` as a dictionary (and in `M.N_vec` as an array), indegrees in `M.K` as a dictionary (and in `M.K_matrix` as an array). Number of synapses can also be access via `M.synapses` (and in `M.syn_matrix` as an array). <br>
%% Cell type:code id:6316ac24 tags: %% Cell type:code id:6316ac24 tags:
``` python ``` python
# Neuron numbers # Neuron numbers
# Dictionary of neuron numbers # Dictionary of neuron numbers
# M.N # M.N
# Array of neuron numbers # Array of neuron numbers
# M.N_vec # M.N_vec
``` ```
%% Cell type:code id:8408d463-557b-481b-afc1-5fbbbd67306d tags: %% Cell type:code id:8408d463-557b-481b-afc1-5fbbbd67306d tags:
``` python ``` python
# Indegrees # Indegrees
# Dictionary of nodes indegrees organized as: # Dictionary of nodes indegrees organized as:
# {<source_area>: {<source_pop>: {<target_area>: {<target_pop>: indegree_values}}}} # {<source_area>: {<source_pop>: {<target_area>: {<target_pop>: indegree_values}}}}
# M.K # M.K
# Array of nodes indegrees # Array of nodes indegrees
# M.K_matrix.shape # M.K_matrix.shape
``` ```
%% Cell type:code id:445a722a tags: %% Cell type:code id:445a722a tags:
``` python ``` python
# Synapses # Synapses
# Dictionary of synapses that target neurons receive, it is organized as: # Dictionary of synapses that target neurons receive, it is organized as:
# {<source_area>: {<source_pop>: {<target_area>: {<target_pop>: number_of_synapses}}}} # {<source_area>: {<source_pop>: {<target_area>: {<target_pop>: number_of_synapses}}}}
# M.synapses # M.synapses
# Array of # Array of
# M.syn_matrix # M.syn_matrix
``` ```
%% Cell type:code id:05512922-26e5-425f-90a4-0df7c2279ccf tags: %% Cell type:code id:05512922-26e5-425f-90a4-0df7c2279ccf tags:
``` python ``` python
%%capture captured %%capture captured
# from M2E_visualize_interareal_connectivity import visualize_interareal_connectivity # from M2E_visualize_interareal_connectivity import visualize_interareal_connectivity
# visualize_interareal_connectivity(M) # visualize_interareal_connectivity(M)
``` ```
%% Cell type:markdown id:bae85d86-157c-47a2-9826-860b410a440e tags: %% Cell type:markdown id:bae85d86-157c-47a2-9826-860b410a440e tags:
Based on: <br> Full-scale interareal connectivity is from: <br>
Schmidt M, Bakker R, Hilgetag CC, Diesmann M & van Albada SJ <br> Schmidt M, Bakker R, Hilgetag CC, Diesmann M & van Albada SJ <br>
Multi-scale account of the network structure of macaque visual cortex <br> Multi-scale account of the network structure of macaque visual cortex <br>
Brain Structure and Function (2018), 223: 1409 [https://doi.org/10.1007/s00429-017-1554-4](https://doi.org/10.1007/s00429-017-1554-4) <br> Brain Structure and Function (2018), 223: 1409 [https://doi.org/10.1007/s00429-017-1554-4](https://doi.org/10.1007/s00429-017-1554-4) <br>
Fig 4. D **Area-level connectivity of the model, based on data in a–c, expressed as relative indegrees for each target area** Fig 4. D **Area-level connectivity of the model, based on data in a–c, expressed as relative indegrees for each target area**
%% Cell type:markdown id:e67f37e9-ec8d-4bb1-bd21-45e966f47ab6 tags: %% Cell type:markdown id:e67f37e9-ec8d-4bb1-bd21-45e966f47ab6 tags:
Go back to [Notebook structure](#toc) Go back to [Notebook structure](#toc)
%% Cell type:markdown id:0c1cad59-81d0-4e24-ac33-13c4ca8c6dec tags: %% Cell type:markdown id:0c1cad59-81d0-4e24-ac33-13c4ca8c6dec tags:
### 2.4. Run a simulation <a class="anchor" id="section_2_4"></a> ### 2.4. Run a simulation <a class="anchor" id="section_2_4"></a>
%% Cell type:code id:15778e9c tags: %% Cell type:code id:15778e9c tags:
``` python ``` python
%%capture captured %%capture captured
# run the simulation, depending on the model parameter and downscale ratio, the running time varies largely. # run the simulation, depending on the model parameter and downscale ratio, the running time varies largely.
M.simulation.simulate() M.simulation.simulate()
``` ```
%% Cell type:markdown id:fd6e3232 tags: %% Cell type:markdown id:fd6e3232 tags:
Go back to [Notebook structure](#toc) Go back to [Notebook structure](#toc)
%% Cell type:markdown id:bb71c922 tags: %% Cell type:markdown id:bb71c922 tags:
## S3. Simulation Results Visualziation <a class="anchor" id="section_3"></a> ## S3. Simulation Results Visualziation <a class="anchor" id="section_3"></a>
%% Cell type:markdown id:38ddd973 tags: %% Cell type:markdown id:38ddd973 tags:
### 3.1. Instantaneous and mean firing rate across all populations <a class="anchor" id="section_3_1"></a> ### 3.1. Instantaneous and mean firing rate across all populations <a class="anchor" id="section_3_1"></a>
%% Cell type:code id:bea30fc8 tags: %% Cell type:code id:bea30fc8 tags:
``` python ``` python
from M2E_visualize_instantaneous_and_mean_firing_rates import plot_instan_mean_firing_rate from M2E_visualize_instantaneous_and_mean_firing_rates import plot_instan_mean_firing_rate
plot_instan_mean_firing_rate(M) plot_instan_mean_firing_rate(M)
``` ```
%% Output %% Output
%% Cell type:markdown id:e91c436e-db94-4cd7-a531-29c032efeeae tags: %% Cell type:markdown id:e91c436e-db94-4cd7-a531-29c032efeeae tags:
### 3.2 Resting state plots <a class="anchor" id="section_3_2"></a> ### 3.2 Resting state plots <a class="anchor" id="section_3_2"></a>
%% Cell type:markdown id:aeae56a4 tags: %% Cell type:markdown id:aeae56a4 tags:
**Fig 5. Resting state of the model with χ =1.9.** (A-C) Raster plot of spiking activity of 3% of the neurons in area V1 (A), V2 (B), and FEF (C). Blue: excitatory neurons, red: inhibitory neurons. (D-F) Spiking statistics across all 32 areas for the respective populations shown as area-averaged box plots. Crosses: medians, boxes: interquartile range (IQR), whiskers extend to the most extremeobservat ions within 1.5×IQR beyond the IQR. (D) Population-averaged firing rates. (E) Average pairwise correlation coefficients of spiking activity. (F) Irregularity measured by revised local variation LvR averaged across neurons. (G) Area-averaged firing rates, shown as raw binned spike histograms with 1ms bin width (gray) and convolved histograms, with aGaussian kernel (black) of optimal width. **Fig 5. Resting state of the model with χ =1.9.** (A-C) Raster plot of spiking activity of 3% of the neurons in area V1 (A), V2 (B), and FEF (C). Blue: excitatory neurons, red: inhibitory neurons. (D-F) Spiking statistics across all 32 areas for the respective populations shown as area-averaged box plots. Crosses: medians, boxes: interquartile range (IQR), whiskers extend to the most extremeobservat ions within 1.5×IQR beyond the IQR. (D) Population-averaged firing rates. (E) Average pairwise correlation coefficients of spiking activity. (F) Irregularity measured by revised local variation LvR averaged across neurons. (G) Area-averaged firing rates, shown as raw binned spike histograms with 1ms bin width (gray) and convolved histograms, with aGaussian kernel (black) of optimal width.
%% Cell type:code id:ae19bcc3 tags: %% Cell type:code id:ae19bcc3 tags:
``` python ``` python
from M2E_visualize_resting_state import plot_resting_state from M2E_visualize_resting_state import plot_resting_state
plot_resting_state(M, data_path) plot_resting_state(M, data_path)
``` ```
%% Output %% Output
--------------------------------------------------------------------------- ---------------------------------------------------------------------------
NameError Traceback (most recent call last) TypeError Traceback (most recent call last)
Cell In [16], line 2 Cell In [18], line 2
1 from M2E_visualize_resting_state import plot_resting_state 1 from M2E_visualize_resting_state import plot_resting_state
----> 2 plot_resting_state(M, A, label_spikes, data_path) ----> 2 plot_resting_state(M, data_path)
NameError: name 'A' is not defined TypeError: plot_resting_state() missing 1 required positional argument: 'data_path'
%% Cell type:markdown id:473d0882-8e45-4330-bfa2-2c7e1af0dac4 tags: %% Cell type:markdown id:473d0882-8e45-4330-bfa2-2c7e1af0dac4 tags:
### 3.3 Time-averaged population rates <a class="anchor" id="section_4_3"></a> ### 3.3 Time-averaged population rates <a class="anchor" id="section_4_3"></a>
An overview over time-averaged population rates encoded in colors with areas along x-axis and populations along y-axis. An overview over time-averaged population rates encoded in colors with areas along x-axis and populations along y-axis.
%% Cell type:code id:721d1f03-df25-468d-8075-a807025a9c58 tags: %% Cell type:code id:721d1f03-df25-468d-8075-a807025a9c58 tags:
``` python ``` python
# %%capture captured # %%capture captured
A.show_rates() A.show_rates()
``` ```
%% Output
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In [19], line 2
1 # %%capture captured
----> 2 A.show_rates()
NameError: name 'A' is not defined
%% Cell type:code id:5b40db5d-51b2-4d16-b36b-9f1995452b05 tags: %% Cell type:code id:5b40db5d-51b2-4d16-b36b-9f1995452b05 tags:
``` python ``` python
|Index|0|1|2|3|4|5|6|7| |Index|0|1|2|3|4|5|6|7|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
``` ```
%% Output
Cell In [20], line 1
|Index|0|1|2|3|4|5|6|7|
^
SyntaxError: invalid syntax
%% Cell type:markdown id:b03d44e8-2216-44ff-ada4-83e9c3e6d30a tags: %% Cell type:markdown id:b03d44e8-2216-44ff-ada4-83e9c3e6d30a tags:
|Index|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31| |Index|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|Area |V1|V2|VP|V3|PIP|V3A|MT|V4t|V4|PO|VOT|DP|MIP|MDP|MSTd|VIP|LIP|PITv|PITd|AITv|MSTl|FST|CITv|CITd|7a|STPp|STPa|FEF|46|TF|TH|AITd| |Area |V1|V2|VP|V3|PIP|V3A|MT|V4t|V4|PO|VOT|DP|MIP|MDP|MSTd|VIP|LIP|PITv|PITd|AITv|MSTl|FST|CITv|CITd|7a|STPp|STPa|FEF|46|TF|TH|AITd|
%% Cell type:markdown id:ef74ca3e-98dc-49c9-a4a0-2c640e29b1d9 tags: %% Cell type:markdown id:ef74ca3e-98dc-49c9-a4a0-2c640e29b1d9 tags:
Go back to [Notebook structure](#toc) Go back to [Notebook structure](#toc)
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment