Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
multi-area-model
Manage
Activity
Members
Labels
Plan
Issues
7
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
IAS-6
multi-area-model
Commits
1597835a
Commit
1597835a
authored
6 years ago
by
Maximilian Schmidt
Browse files
Options
Downloads
Patches
Plain Diff
Add script to run network simulations
parent
af81988c
No related branches found
No related tags found
1 merge request
!1
Add all necessary files for the multi-area model
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
figures/Schmidt2018_dyn/run_network_simulations.py
+141
-0
141 additions, 0 deletions
figures/Schmidt2018_dyn/run_network_simulations.py
with
141 additions
and
0 deletions
figures/Schmidt2018_dyn/run_network_simulations.py
0 → 100644
+
141
−
0
View file @
1597835a
import
os
from
multiarea_model
import
MultiAreaModel
from
start_jobs
import
start_job
from
config
import
submit_cmd
,
jobscript_template
from
config
import
base_path
"""
This script provides the code to execute all simulations presented in
Schmidt M, Bakker R, Shen K, Bezgin B, Diesmann M & van Albada SJ
(2018) A multi-scale layer-resolved spiking network model of
resting-state dynamics in macaque cortex.
Needs to be simulated with sufficient
resources, for instance on a compute cluster.
"""
# Common parameter settings
input_params
=
{
'
rate_ext
'
:
10.
}
neuron_params
=
{
'
V0_mean
'
:
-
150.
,
'
V0_sd
'
:
50.
}
sim_params
=
{
'
num_processes
'
:
20
,
# Needs to be adapted to the HPC system used
'
local_num_threads
'
:
24
,
# Needs to be adapted to the HPC system used
'
recording_dict
'
:
{
'
record_vm
'
:
False
}}
"""
Simulation with kappa = 1. leading to the low-activity fixed point
shown in Fig. 2.
"""
d
=
{}
sim_params
.
update
({
'
t_sim
'
:
10500.
})
conn_params
=
{
'
g
'
:
-
16.
,
'
fac_nu_ext_TH
'
:
1.2
,
'
fac_nu_ext_5E
'
:
1.
,
'
fac_nu_ext_6E
'
:
1.
,
'
av_indegree_V1
'
:
3950.
}
network_params
=
{
'
N_scaling
'
:
1.
,
'
K_scaling
'
:
1.
,
'
connection_params
'
:
conn_params
,
'
neuron_params
'
:
neuron_params
,
'
input_params
'
:
input_params
}
M_LA
=
MultiAreaModel
(
network_params
,
simulation
=
True
,
sim_spec
=
sim_params
)
# start_job(M_LA.simulation.label, submit_cmd, jobscript_template)
"""
Simulation with kappa = 1.125 leading to the high-activity fixed point
shown in Fig. 2.
"""
sim_params
.
update
({
'
t_sim
'
:
10500.
})
conn_params
=
{
'
g
'
:
-
16.
,
'
fac_nu_ext_TH
'
:
1.2
,
'
fac_nu_ext_5E
'
:
1.125
,
'
fac_nu_ext_6E
'
:
1.41666667
,
'
av_indegree_V1
'
:
3950.
}
network_params
=
{
'
N_scaling
'
:
1.
,
'
K_scaling
'
:
1.
,
'
connection_params
'
:
conn_params
,
'
neuron_params
'
:
neuron_params
}
M_HA
=
MultiAreaModel
(
network_params
,
simulation
=
True
,
sim_spec
=
sim_params
)
p
,
r_HA
=
M_HA
.
theory
.
integrate_siegert
()
# start_job(M_HA.simulation.label, submit_cmd, jobscript_template)
"""
Simulation with kappa = 1.125, chi=1
Presented in Fig. 2, 4, and 8.
"""
sim_params
.
update
({
'
t_sim
'
:
10500.
})
conn_params
=
{
'
g
'
:
-
11.
,
'
fac_nu_ext_TH
'
:
1.2
,
'
fac_nu_ext_5E
'
:
1.125
,
'
fac_nu_ext_6E
'
:
1.41666667
,
'
av_indegree_V1
'
:
3950.
,
'
K_stable
'
:
'
../SchueckerSchmidt2018/K_prime_original.npy
'
}
network_params
=
{
'
N_scaling
'
:
1.
,
'
K_scaling
'
:
1.
,
'
connection_params
'
:
conn_params
,
'
neuron_params
'
:
neuron_params
}
M_stab
=
MultiAreaModel
(
network_params
,
simulation
=
True
,
sim_spec
=
sim_params
)
p
,
r_stab
=
M_stab
.
theory
.
integrate_siegert
()
# start_job(M_stab.simulation.label, submit_cmd, jobscript_template)
"""
Simulation with kappa = 1.125, chi=1.9
Presented in Fig. 4 and all following.
"""
sim_params
.
update
({
'
t_sim
'
:
100500.
})
conn_params
=
{
'
g
'
:
-
11.
,
'
fac_nu_ext_TH
'
:
1.2
,
'
fac_nu_ext_5E
'
:
1.125
,
'
fac_nu_ext_6E
'
:
1.41666667
,
'
av_indegree_V1
'
:
3950.
,
'
K_stable
'
:
'
../SchueckerSchmidt2018/K_prime_original.npy
'
,
'
cc_weights_factor
'
:
1.9
,
'
cc_weights_I_factor
'
:
2.
}
network_params
=
{
'
N_scaling
'
:
1.
,
'
K_scaling
'
:
1.
,
'
connection_params
'
:
conn_params
,
'
neuron_params
'
:
neuron_params
}
M_stab
=
MultiAreaModel
(
network_params
,
simulation
=
True
,
sim_spec
=
sim_params
)
p
,
r_stab
=
M_stab
.
theory
.
integrate_siegert
()
# start_job(M_stab.simulation.label, submit_cmd, jobscript_template)
"""
Simulations with kappa = 1.125
and varying chi, presented in Fig. 4 and 8.
"""
for
cc_weights_factor
in
[
1.4
,
1.5
,
1.6
,
1.7
,
1.75
,
1.8
,
2.
,
2.1
,
2.5
]:
sim_params
.
update
({
'
t_sim
'
:
10500.
})
conn_params
=
{
'
g
'
:
-
11.
,
'
fac_nu_ext_TH
'
:
1.2
,
'
fac_nu_ext_5E
'
:
1.125
,
'
fac_nu_ext_6E
'
:
1.41666667
,
'
av_indegree_V1
'
:
3950.
,
'
K_stable
'
:
'
../SchueckerSchmidt2018/K_prime_original.npy
'
,
'
cc_weights_factor
'
:
cc_weights_factor
,
'
cc_weights_I_factor
'
:
2.
}
network_params
=
{
'
N_scaling
'
:
1.
,
'
K_scaling
'
:
1.
,
'
connection_params
'
:
conn_params
,
'
neuron_params
'
:
neuron_params
}
M_stab
=
MultiAreaModel
(
network_params
,
simulation
=
True
,
sim_spec
=
sim_params
)
p
,
r_stab
=
M_stab
.
theory
.
integrate_siegert
()
# start_job(M_stab.simulation.label, submit_cmd, jobscript_template)
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment