From 1597835a019c7e17a128542a4046d67e655b2b52 Mon Sep 17 00:00:00 2001 From: Maximilian Schmidt <max.schmidt@fz-juelich.de> Date: Fri, 25 May 2018 18:12:50 +0900 Subject: [PATCH] Add script to run network simulations --- .../run_network_simulations.py | 141 ++++++++++++++++++ 1 file changed, 141 insertions(+) create mode 100644 figures/Schmidt2018_dyn/run_network_simulations.py diff --git a/figures/Schmidt2018_dyn/run_network_simulations.py b/figures/Schmidt2018_dyn/run_network_simulations.py new file mode 100644 index 0000000..a04938c --- /dev/null +++ b/figures/Schmidt2018_dyn/run_network_simulations.py @@ -0,0 +1,141 @@ +import os + +from multiarea_model import MultiAreaModel +from start_jobs import start_job +from config import submit_cmd, jobscript_template +from config import base_path + +""" +This script provides the code to execute all simulations presented in +Schmidt M, Bakker R, Shen K, Bezgin B, Diesmann M & van Albada SJ +(2018) A multi-scale layer-resolved spiking network model of +resting-state dynamics in macaque cortex. + +Needs to be simulated with sufficient +resources, for instance on a compute cluster. +""" + +# Common parameter settings +input_params = {'rate_ext': 10.} +neuron_params = {'V0_mean': -150., + 'V0_sd': 50.} +sim_params = {'num_processes': 20, # Needs to be adapted to the HPC system used + 'local_num_threads': 24, # Needs to be adapted to the HPC system used + 'recording_dict': {'record_vm': False}} + + +""" +Simulation with kappa = 1. leading to the low-activity fixed point +shown in Fig. 2. +""" +d = {} + +sim_params.update({'t_sim': 10500.}) +conn_params = {'g': -16., + 'fac_nu_ext_TH': 1.2, + 'fac_nu_ext_5E': 1., + 'fac_nu_ext_6E': 1., + 'av_indegree_V1': 3950.} +network_params = {'N_scaling': 1., + 'K_scaling': 1., + 'connection_params': conn_params, + 'neuron_params': neuron_params, + 'input_params': input_params} + +M_LA = MultiAreaModel(network_params, simulation=True, + sim_spec=sim_params) + +# start_job(M_LA.simulation.label, submit_cmd, jobscript_template) + + +""" +Simulation with kappa = 1.125 leading to the high-activity fixed point +shown in Fig. 2. +""" +sim_params.update({'t_sim': 10500.}) +conn_params = {'g': -16., + 'fac_nu_ext_TH': 1.2, + 'fac_nu_ext_5E': 1.125, + 'fac_nu_ext_6E': 1.41666667, + 'av_indegree_V1': 3950.} +network_params = {'N_scaling': 1., + 'K_scaling': 1., + 'connection_params': conn_params, + 'neuron_params': neuron_params} + +M_HA = MultiAreaModel(network_params, simulation=True, + sim_spec=sim_params) +p, r_HA = M_HA.theory.integrate_siegert() +# start_job(M_HA.simulation.label, submit_cmd, jobscript_template) + + +""" +Simulation with kappa = 1.125, chi=1 +Presented in Fig. 2, 4, and 8. +""" +sim_params.update({'t_sim': 10500.}) +conn_params = {'g': -11., + 'fac_nu_ext_TH': 1.2, + 'fac_nu_ext_5E': 1.125, + 'fac_nu_ext_6E': 1.41666667, + 'av_indegree_V1': 3950., + 'K_stable': '../SchueckerSchmidt2018/K_prime_original.npy'} +network_params = {'N_scaling': 1., + 'K_scaling': 1., + 'connection_params': conn_params, + 'neuron_params': neuron_params} + +M_stab = MultiAreaModel(network_params, simulation=True, + sim_spec=sim_params) +p, r_stab = M_stab.theory.integrate_siegert() +# start_job(M_stab.simulation.label, submit_cmd, jobscript_template) + + +""" +Simulation with kappa = 1.125, chi=1.9 +Presented in Fig. 4 and all following. +""" +sim_params.update({'t_sim': 100500.}) +conn_params = {'g': -11., + 'fac_nu_ext_TH': 1.2, + 'fac_nu_ext_5E': 1.125, + 'fac_nu_ext_6E': 1.41666667, + 'av_indegree_V1': 3950., + 'K_stable': '../SchueckerSchmidt2018/K_prime_original.npy', + 'cc_weights_factor': 1.9, + 'cc_weights_I_factor': 2.} +network_params = {'N_scaling': 1., + 'K_scaling': 1., + 'connection_params': conn_params, + 'neuron_params': neuron_params} + +M_stab = MultiAreaModel(network_params, simulation=True, + sim_spec=sim_params) +p, r_stab = M_stab.theory.integrate_siegert() +# start_job(M_stab.simulation.label, submit_cmd, jobscript_template) + + +""" +Simulations with kappa = 1.125 +and varying chi, presented in Fig. 4 and 8. +""" +for cc_weights_factor in [1.4, 1.5, 1.6, 1.7, 1.75, 1.8, 2., 2.1, 2.5]: + sim_params.update({'t_sim': 10500.}) + conn_params = {'g': -11., + 'fac_nu_ext_TH': 1.2, + 'fac_nu_ext_5E': 1.125, + 'fac_nu_ext_6E': 1.41666667, + 'av_indegree_V1': 3950., + 'K_stable': '../SchueckerSchmidt2018/K_prime_original.npy', + 'cc_weights_factor': cc_weights_factor, + 'cc_weights_I_factor': 2.} + + network_params = {'N_scaling': 1., + 'K_scaling': 1., + 'connection_params': conn_params, + 'neuron_params': neuron_params} + + M_stab = MultiAreaModel(network_params, simulation=True, + sim_spec=sim_params) + p, r_stab = M_stab.theory.integrate_siegert() + # start_job(M_stab.simulation.label, submit_cmd, jobscript_template) -- GitLab