Skip to content
Snippets Groups Projects

Unpin py-pybind11

Merged Eric Müller requested to merge emuller/ebrains-spack-builds:unpin_py-pybind11 into master
1 unresolved thread

Merge request reports

Loading
Loading

Activity

Filter activity
  • Approvals
  • Assignees & reviewers
  • Comments (from bots)
  • Comments (from users)
  • Commits & branches
  • Edits
  • Labels
  • Lock status
  • Mentions
  • Merge request status
  • Tracking
  • Author Maintainer

    @akarmas This should fix the conflict with arbor; however, we introduced the "pin" to workaround a scipy error… let's see what happens.

    FYI: @sschmitt @brent

    Edited by Eric Müller
  • mentioned in commit 1222f345

  • Did not succeed.
    py-scipy and py-matplotlib failed.
    Pipeline here

  • Was the conflict solved in the meantime?

  • Not sure. Do you know, @emuller?

  • Author Maintainer

    I believe so, this should be a side-effect of ed52e858 — which basically "unpins" py-torch's dependency on py-pybind11, i.e.:

    --- spack/var/spack/repos/builtin/packages/py-torch/package.py	2022-05-04 17:52:46.765756617 +0200
    +++ packages/py-torch/package.py	2022-07-11 18:33:23.899361894 +0200
    @@ -101,7 +101,7 @@ class PyTorch(PythonPackage, CudaPackage
         depends_on('py-future', when='@1.1: ^python@:2', type=('build', 'run'))
         depends_on('py-pyyaml', type=('build', 'run'))
         depends_on('py-typing', when='^python@:3.4', type=('build', 'run'))
    -    depends_on('py-pybind11@2.6.2', when='@1.8:', type=('build', 'link', 'run'))
    +    depends_on('py-pybind11@2.6.2:', when='@1.8:', type=('build', 'link', 'run'))
         depends_on('py-pybind11@2.3.0', when='@1.1:1.7', type=('build', 'link', 'run'))
         depends_on('py-pybind11@2.2.4', when='@:1.0', type=('build', 'link', 'run'))
         depends_on('py-dataclasses', when='@1.7: ^python@3.6', type=('build', 'run'))
    • So the pipeline builds now including Arbor?

    • Author Maintainer

      I guess so… we have those arbor packages installed (on lab-int):

      jovyan@jupyterhub-nb-USERNAME:/opt/app-root/src$ /srv/test-build/spack/bin/spack find -Lv arbor
      ==> 10 installed packages
      -- linux-centos7-x86_64 / gcc@10.3.0 ----------------------------
      j3v6fg3exrqhfblzbl2p6nolhsa3mukl arbor@0.5.2~assertions~cuda~doc~ipo+mpi+neuroml+python~vectorize build_type=RelWithDebInfo cuda_arch=none
      u3bzjzfk5cgqrmwldn4mas2rncfomzzd arbor@0.5.2~assertions~cuda~doc~ipo+mpi+neuroml+python~vectorize build_type=RelWithDebInfo cuda_arch=none
      vdcabrcspln5nbtojxk5wyp55is42mbu arbor@0.6~assertions~cuda~doc~ipo+mpi+neuroml+python~vectorize build_type=RelWithDebInfo
      4nhs2gkitb72lheuxst32lgeasmxwpcv arbor@0.6~assertions~cuda~doc~ipo+mpi+neuroml~python~vectorize build_type=RelWithDebInfo cuda_arch=none
      74ympck7o6fajr5v335zp2oahbsghvvt arbor@0.6~assertions~cuda~doc~ipo+mpi+neuroml+python~vectorize build_type=RelWithDebInfo cuda_arch=none
      ttkhvpevd3wdkl5vddgvn7a3hmbdyxk2 arbor@0.6~assertions~cuda~doc~ipo+mpi+neuroml+python~vectorize build_type=RelWithDebInfo
      ljuh23i77f6qggxh77yxypz6femnfjov arbor@0.6~assertions~cuda~doc~ipo+mpi+neuroml+python~vectorize build_type=RelWithDebInfo
      y4e2jzuhtxkc7mzvheoi6auamhem7p4f arbor@0.6~assertions~cuda~doc~ipo+mpi+neuroml+python~vectorize build_type=RelWithDebInfo
      qei3nktdjpbbivnzhy7myono3p5xnumg arbor@0.6~assertions~cuda~doc~ipo+mpi+neuroml+python~vectorize build_type=RelWithDebInfo
      r2fcprd3kc7i4r6fsk5ss3fklqreujsq arbor@0.6~assertions~cuda~doc~ipo+mpi+neuroml+python~vectorize build_type=RelWithDebInfo

      Maybe @elmath can say something about when/if the last "full" (re)build happened…

      Edited by Eric Müller
    • Please register or sign in to reply
Please register or sign in to reply