Skip to content
Snippets Groups Projects
package.py 18.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)

import os
import sys

from spack import *


class PyTorch(PythonPackage, CudaPackage):
    """Tensors and Dynamic neural networks in Python
    with strong GPU acceleration."""

    homepage = "https://pytorch.org/"
    git      = "https://github.com/pytorch/pytorch.git"

    maintainers = ['adamjstewart']

    # Exact set of modules is version- and variant-specific, just attempt to import the
    # core libraries to ensure that the package was successfully installed.
    import_modules = ['torch', 'torch.autograd', 'torch.nn', 'torch.utils']

    version('master', branch='master', submodules=True)
    version('1.10.2', tag='v1.10.2', submodules=True)
    version('1.10.1', tag='v1.10.1', submodules=True)
    version('1.10.0', tag='v1.10.0', submodules=True)
    version('1.9.1', tag='v1.9.1', submodules=True)
    version('1.9.0', tag='v1.9.0', submodules=True)
    version('1.8.2', tag='v1.8.2', submodules=True)
    version('1.8.1', tag='v1.8.1', submodules=True)
    version('1.8.0', tag='v1.8.0', submodules=True)
    version('1.7.1', tag='v1.7.1', submodules=True)
    version('1.7.0', tag='v1.7.0', submodules=True)
    version('1.6.0', tag='v1.6.0', submodules=True)
    version('1.5.1', tag='v1.5.1', submodules=True)
    version('1.5.0', tag='v1.5.0', submodules=True)
    version('1.4.1', tag='v1.4.1', submodules=True)
    version('1.3.1', tag='v1.3.1', submodules=True)
    version('1.3.0', tag='v1.3.0', submodules=True)
    version('1.2.0', tag='v1.2.0', submodules=True)
    version('1.1.0', tag='v1.1.0', submodules=True)
    version('1.0.1', tag='v1.0.1', submodules=True, deprecated=True)
    version('1.0.0', tag='v1.0.0', submodules=True, deprecated=True)

    is_darwin = sys.platform == 'darwin'

    # All options are defined in CMakeLists.txt.
    # Some are listed in setup.py, but not all.
    variant('caffe2', default=True, description='Build Caffe2', when='@1.7:')
    variant('test', default=False, description='Build C++ test binaries')
    variant('cuda', default=not is_darwin, description='Use CUDA')
    variant('rocm', default=False, description='Use ROCm')
    variant('cudnn', default=not is_darwin, description='Use cuDNN', when='+cuda')
    variant('fbgemm', default=True, description='Use FBGEMM (quantized 8-bit server operators)')
    variant('kineto', default=True, description='Use Kineto profiling library', when='@1.8:')
    variant('magma', default=not is_darwin, description='Use MAGMA', when='+cuda')
    variant('metal', default=is_darwin, description='Use Metal for Caffe2 iOS build')
    variant('nccl', default=True, description='Use NCCL', when='+cuda platform=linux')
    variant('nccl', default=True, description='Use NCCL', when='+cuda platform=cray')
    variant('nccl', default=True, description='Use NCCL', when='+rocm platform=linux')
    variant('nccl', default=True, description='Use NCCL', when='+rocm platform=cray')
    variant('nnpack', default=True, description='Use NNPACK')
    variant('numa', default=True, description='Use NUMA', when='platform=linux')
    variant('numa', default=True, description='Use NUMA', when='platform=cray')
    variant('numpy', default=True, description='Use NumPy')
    variant('openmp', default=True, description='Use OpenMP for parallel code')
    variant('qnnpack', default=True, description='Use QNNPACK (quantized 8-bit operators)')
    variant('valgrind', default=True, description='Use Valgrind', when='@1.8: platform=linux')
    variant('valgrind', default=True, description='Use Valgrind', when='@1.8: platform=cray')
    variant('xnnpack', default=True, description='Use XNNPACK', when='@1.5:')
    variant('mkldnn', default=True, description='Use MKLDNN')
    variant('distributed', default=not is_darwin, description='Use distributed')
    variant('mpi', default=not is_darwin, description='Use MPI for Caffe2', when='+distributed')
    variant('gloo', default=not is_darwin, description='Use Gloo', when='+distributed')
    variant('tensorpipe', default=not is_darwin, description='Use TensorPipe', when='@1.6: +distributed')
    variant('onnx_ml', default=True, description='Enable traditional ONNX ML API', when='@1.5:')
    variant('breakpad', default=True, description='Enable breakpad crash dump library', when='@1.9:')

    conflicts('+cuda+rocm')
    conflicts('+breakpad', when='target=ppc64:')
    conflicts('+breakpad', when='target=ppc64le:')

    conflicts('cuda_arch=none', when='+cuda',
              msg='Must specify CUDA compute capabilities of your GPU, see '
              'https://developer.nvidia.com/cuda-gpus')

    # Required dependencies
    depends_on('cmake@3.5:', type='build')
    # Use Ninja generator to speed up build times, automatically used if found
    depends_on('ninja@1.5:', when='@1.1:', type='build')
    # See python_min_version in setup.py
    depends_on('python@3.6.2:', when='@1.7.1:', type=('build', 'link', 'run'))
    depends_on('python@3.6.1:', when='@1.6:1.7.0', type=('build', 'link', 'run'))
    depends_on('python@3.5:', when='@1.5', type=('build', 'link', 'run'))
    depends_on('python@2.7:2,3.5:', when='@1.4', type=('build', 'link', 'run'))
    depends_on('python@2.7:2,3.5:3.7', when='@:1.3', type=('build', 'link', 'run'))
    depends_on('py-setuptools', type=('build', 'run'))
    depends_on('py-future', when='@1.5:', type=('build', 'run'))
    depends_on('py-future', when='@1.1: ^python@:2', type=('build', 'run'))
    depends_on('py-pyyaml', type=('build', 'run'))
    depends_on('py-typing', when='^python@:3.4', type=('build', 'run'))
    depends_on('py-pybind11@2.6.2:', when='@1.8:', type=('build', 'link', 'run'))
    depends_on('py-pybind11@2.3.0', when='@1.1:1.7', type=('build', 'link', 'run'))
    depends_on('py-pybind11@2.2.4', when='@:1.0', type=('build', 'link', 'run'))
    depends_on('py-dataclasses', when='@1.7: ^python@3.6', type=('build', 'run'))
    depends_on('py-tqdm', type='run')
    # https://github.com/onnx/onnx#prerequisites
    depends_on('py-numpy@1.16.6:', type=('build', 'run'))
    depends_on('py-protobuf@3.12.2:', when='@1.10:', type=('build', 'run'))
    depends_on('py-protobuf@:3.14', when='@:1.9', type=('build', 'run'))
    depends_on('protobuf@3.12.2:', when='@1.10:')
    depends_on('protobuf@:3.14', when='@:1.9')
    depends_on('py-typing-extensions@3.6.2.1:', when='@1.7:', type=('build', 'run'))
    depends_on('blas')
    depends_on('lapack')
    depends_on('eigen')
    # https://github.com/pytorch/pytorch/issues/60329
    # depends_on('cpuinfo@2020-12-17', when='@1.8:')
    # depends_on('cpuinfo@2020-06-11', when='@1.6:1.7')
    # https://github.com/shibatch/sleef/issues/427
    # depends_on('sleef@3.5.1_2020-12-22', when='@1.8:')
    # https://github.com/pytorch/pytorch/issues/60334
    # depends_on('sleef@3.4.0_2019-07-30', when='@1.6:1.7')
    # https://github.com/Maratyszcza/FP16/issues/18
    # depends_on('fp16@2020-05-14', when='@1.6:')
    depends_on('pthreadpool@2021-04-13', when='@1.9:')
    depends_on('pthreadpool@2020-10-05', when='@1.8')
    depends_on('pthreadpool@2020-06-15', when='@1.6:1.7')
    depends_on('psimd@2020-05-17', when='@1.6:')
    depends_on('fxdiv@2020-04-17', when='@1.6:')
    depends_on('benchmark', when='@1.6:+test')

    # Optional dependencies
    # https://discuss.pytorch.org/t/compiling-1-10-1-from-source-with-gcc-11-and-cuda-11-5/140971
    depends_on('cuda@9.2:', when='@1.11:+cuda', type=('build', 'link', 'run'))
    depends_on('cuda@9.2:11.4', when='@1.6:+cuda', type=('build', 'link', 'run'))
    depends_on('cuda@9:11.4', when='@1.1:+cuda', type=('build', 'link', 'run'))
    depends_on('cuda@7.5:11.4', when='+cuda', type=('build', 'link', 'run'))
    depends_on('cudnn@6:7', when='@:1.0+cudnn')
    depends_on('cudnn@7.0:7', when='@1.1:1.5+cudnn')
    depends_on('cudnn@7:', when='@1.6:+cudnn')
    depends_on('magma', when='+magma')
    depends_on('nccl', when='+nccl')
    depends_on('numactl', when='+numa')
    depends_on('llvm-openmp', when='%apple-clang +openmp')
    depends_on('valgrind', when='+valgrind')
    # https://github.com/pytorch/pytorch/issues/60332
    # depends_on('xnnpack@2021-02-22', when='@1.8:+xnnpack')
    # depends_on('xnnpack@2020-03-23', when='@1.6:1.7+xnnpack')
    depends_on('mpi', when='+mpi')
    # https://github.com/pytorch/pytorch/issues/60270
    # depends_on('gloo@2021-05-04', when='@1.9:+gloo')
    # depends_on('gloo@2020-09-18', when='@1.7:1.8+gloo')
    # depends_on('gloo@2020-03-17', when='@1.6+gloo')
    # https://github.com/pytorch/pytorch/issues/60331
    # depends_on('onnx@1.8.0_2020-11-03', when='@1.8:+onnx_ml')
    # depends_on('onnx@1.7.0_2020-05-31', when='@1.6:1.7+onnx_ml')
    depends_on('mkl', when='+mkldnn')

    # Test dependencies
    depends_on('py-hypothesis', type='test')
    depends_on('py-six', type='test')
    depends_on('py-psutil', type='test')

    # Fix BLAS being overridden by MKL
    # https://github.com/pytorch/pytorch/issues/60328
    patch('https://patch-diff.githubusercontent.com/raw/pytorch/pytorch/pull/59220.patch',
          sha256='e37afffe45cf7594c22050109942370e49983ad772d12ebccf508377dc9dcfc9',
          when='@1.2:')

    # Fixes build on older systems with glibc <2.12
    patch('https://patch-diff.githubusercontent.com/raw/pytorch/pytorch/pull/55063.patch',
          sha256='e17eaa42f5d7c18bf0d7c37d7b0910127a01ad53fdce3e226a92893356a70395',
          when='@1.1:1.8.1')

    # Fixes CMake configuration error when XNNPACK is disabled
    # https://github.com/pytorch/pytorch/pull/35607
    # https://github.com/pytorch/pytorch/pull/37865
    patch('xnnpack.patch', when='@1.5')

    # Fixes build error when ROCm is enabled for pytorch-1.5 release
    patch('rocm.patch', when='@1.5+rocm')

    # Fixes fatal error: sleef.h: No such file or directory
    # https://github.com/pytorch/pytorch/pull/35359
    # https://github.com/pytorch/pytorch/issues/26555
    # patch('sleef.patch', when='@:1.5')

    # Fixes compilation with Clang 9.0.0 and Apple Clang 11.0.3
    # https://github.com/pytorch/pytorch/pull/37086
    patch('https://github.com/pytorch/pytorch/commit/e921cd222a8fbeabf5a3e74e83e0d8dfb01aa8b5.patch',
          sha256='17561b16cd2db22f10c0fe1fdcb428aecb0ac3964ba022a41343a6bb8cba7049',
          when='@1.1:1.5')

    # Removes duplicate definition of getCusparseErrorString
    # https://github.com/pytorch/pytorch/issues/32083
    patch('cusparseGetErrorString.patch', when='@:1.0^cuda@10.1.243:')

    # Fixes 'FindOpenMP.cmake'
    # to detect openmp settings used by Fujitsu compiler.
    patch('detect_omp_of_fujitsu_compiler.patch', when='%fj')

    # Fix compilation of +distributed~tensorpipe
    # https://github.com/pytorch/pytorch/issues/68002
    patch('https://github.com/pytorch/pytorch/commit/c075f0f633fa0136e68f0a455b5b74d7b500865c.patch',
          sha256='e69e41b5c171bfb00d1b5d4ee55dd5e4c8975483230274af4ab461acd37e40b8', when='@1.10.0+distributed~tensorpipe')

    @property
    def libs(self):
        # TODO: why doesn't `python_platlib` work here?
        root = join_path(
            self.prefix, self.spec['python'].package.platlib, 'torch', 'lib'
        )
        return find_libraries('libtorch', root)

    @property
    def headers(self):
        # TODO: why doesn't `python_platlib` work here?
        root = join_path(
            self.prefix, self.spec['python'].package.platlib, 'torch', 'include'
        )
        headers = find_all_headers(root)
        headers.directories = [root]
        return headers

    @when('@1.5.0:')
    def patch(self):
        # https://github.com/pytorch/pytorch/issues/52208
        filter_file('torch_global_deps PROPERTIES LINKER_LANGUAGE C',
                    'torch_global_deps PROPERTIES LINKER_LANGUAGE CXX',
                    'caffe2/CMakeLists.txt')

    def setup_build_environment(self, env):
        """Set environment variables used to control the build.

        PyTorch's ``setup.py`` is a thin wrapper around ``cmake``.
        In ``tools/setup_helpers/cmake.py``, you can see that all
        environment variables that start with ``BUILD_``, ``USE_``,
        or ``CMAKE_``, plus a few more explicitly specified variable
        names, are passed directly to the ``cmake`` call. Therefore,
        most flags defined in ``CMakeLists.txt`` can be specified as
        environment variables.
        """
        def enable_or_disable(variant, keyword='USE', var=None, newer=False):
            """Set environment variable to enable or disable support for a
            particular variant.

            Parameters:
                variant (str): the variant to check
                keyword (str): the prefix to use for enabling/disabling
                var (str): CMake variable to set. Defaults to variant.upper()
                newer (bool): newer variants that never used NO_*
            """
            if var is None:
                var = variant.upper()

            # Version 1.1.0 switched from NO_* to USE_* or BUILD_*
            # But some newer variants have always used USE_* or BUILD_*
            if self.spec.satisfies('@1.1:') or newer:
                if '+' + variant in self.spec:
                    env.set(keyword + '_' + var, 'ON')
                elif '~' + variant in self.spec:
                    env.set(keyword + '_' + var, 'OFF')
            else:
                if '+' + variant in self.spec:
                    env.unset('NO_' + var)
                elif '~' + variant in self.spec:
                    env.set('NO_' + var, 'ON')

        # Build in parallel to speed up build times
        env.set('MAX_JOBS', make_jobs)

        # Spack logs have trouble handling colored output
        env.set('COLORIZE_OUTPUT', 'OFF')

        enable_or_disable('test', keyword='BUILD')
        enable_or_disable('caffe2', keyword='BUILD')

        enable_or_disable('cuda')
        if '+cuda' in self.spec:
            # cmake/public/cuda.cmake
            # cmake/Modules_CUDA_fix/upstream/FindCUDA.cmake
            env.unset('CUDA_ROOT')
            torch_cuda_arch = ';'.join('{0:.1f}'.format(float(i) / 10.0) for i
                                       in
                                       self.spec.variants['cuda_arch'].value)
            env.set('TORCH_CUDA_ARCH_LIST', torch_cuda_arch)

        enable_or_disable('rocm')

        enable_or_disable('cudnn')
        if '+cudnn' in self.spec:
            # cmake/Modules_CUDA_fix/FindCUDNN.cmake
            env.set('CUDNN_INCLUDE_DIR', self.spec['cudnn'].prefix.include)
            env.set('CUDNN_LIBRARY', self.spec['cudnn'].libs[0])

        enable_or_disable('fbgemm')
        enable_or_disable('kineto')
        enable_or_disable('magma')
        enable_or_disable('metal')
        enable_or_disable('breakpad')

        enable_or_disable('nccl')
        if '+nccl' in self.spec:
            env.set('NCCL_LIB_DIR', self.spec['nccl'].libs.directories[0])
            env.set('NCCL_INCLUDE_DIR', self.spec['nccl'].prefix.include)

        # cmake/External/nnpack.cmake
        enable_or_disable('nnpack')

        enable_or_disable('numa')
        if '+numa' in self.spec:
            # cmake/Modules/FindNuma.cmake
            env.set('NUMA_ROOT_DIR', self.spec['numactl'].prefix)

        # cmake/Modules/FindNumPy.cmake
        enable_or_disable('numpy')
        # cmake/Modules/FindOpenMP.cmake
        enable_or_disable('openmp', newer=True)
        enable_or_disable('qnnpack')
        enable_or_disable('qnnpack', var='PYTORCH_QNNPACK')
        enable_or_disable('valgrind')
        enable_or_disable('xnnpack')
        enable_or_disable('mkldnn')
        enable_or_disable('distributed')
        enable_or_disable('mpi')
        # cmake/Modules/FindGloo.cmake
        enable_or_disable('gloo', newer=True)
        enable_or_disable('tensorpipe')

        if '+onnx_ml' in self.spec:
            env.set('ONNX_ML', 'ON')
        elif '~onnx_ml' in self.spec:
            env.set('ONNX_ML', 'OFF')

        if not self.spec.satisfies('@master'):
            env.set('PYTORCH_BUILD_VERSION', self.version)
            env.set('PYTORCH_BUILD_NUMBER', 0)

        # BLAS to be used by Caffe2
        # Options defined in cmake/Dependencies.cmake and cmake/Modules/FindBLAS.cmake
        if self.spec['blas'].name == 'atlas':
            env.set('BLAS', 'ATLAS')
            env.set('WITH_BLAS', 'atlas')
        elif self.spec['blas'].name in ['blis', 'amdblis']:
            env.set('BLAS', 'BLIS')
            env.set('WITH_BLAS', 'blis')
        elif self.spec['blas'].name == 'eigen':
            env.set('BLAS', 'Eigen')
        elif self.spec['lapack'].name in ['libflame', 'amdlibflame']:
            env.set('BLAS', 'FLAME')
            env.set('WITH_BLAS', 'FLAME')
        elif self.spec['blas'].name in [
                'intel-mkl', 'intel-parallel-studio', 'intel-oneapi-mkl']:
            env.set('BLAS', 'MKL')
            env.set('WITH_BLAS', 'mkl')
        elif self.spec['blas'].name == 'openblas':
            env.set('BLAS', 'OpenBLAS')
            env.set('WITH_BLAS', 'open')
        elif self.spec['blas'].name == 'veclibfort':
            env.set('BLAS', 'vecLib')
            env.set('WITH_BLAS', 'veclib')
        else:
            env.set('BLAS', 'Generic')
            env.set('WITH_BLAS', 'generic')

        # Don't use vendored third-party libraries when possible
        env.set('BUILD_CUSTOM_PROTOBUF', 'OFF')
        env.set('USE_SYSTEM_NCCL', 'ON')
        env.set('USE_SYSTEM_EIGEN_INSTALL', 'ON')
        env.set('pybind11_DIR', self.spec['py-pybind11'].prefix)
        env.set('pybind11_INCLUDE_DIR',
                self.spec['py-pybind11'].prefix.include)
        if self.spec.satisfies('@1.10:'):
            env.set('USE_SYSTEM_PYBIND11', 'ON')
        # https://github.com/pytorch/pytorch/issues/60334
        # if self.spec.satisfies('@1.8:'):
        #     env.set('USE_SYSTEM_SLEEF', 'ON')
        if self.spec.satisfies('@1.6:'):
            # env.set('USE_SYSTEM_LIBS', 'ON')
            # https://github.com/pytorch/pytorch/issues/60329
            # env.set('USE_SYSTEM_CPUINFO', 'ON')
            # https://github.com/pytorch/pytorch/issues/60270
            # env.set('USE_SYSTEM_GLOO', 'ON')
            # https://github.com/Maratyszcza/FP16/issues/18
            # env.set('USE_SYSTEM_FP16', 'ON')
            env.set('USE_SYSTEM_PTHREADPOOL', 'ON')
            env.set('USE_SYSTEM_PSIMD', 'ON')
            env.set('USE_SYSTEM_FXDIV', 'ON')
            env.set('USE_SYSTEM_BENCHMARK', 'ON')
            # https://github.com/pytorch/pytorch/issues/60331
            # env.set('USE_SYSTEM_ONNX', 'ON')
            # https://github.com/pytorch/pytorch/issues/60332
            # env.set('USE_SYSTEM_XNNPACK', 'ON')

    @run_before('install')
    def build_amd(self):
        if '+rocm' in self.spec:
            python(os.path.join('tools', 'amd_build', 'build_amd.py'))

    @run_after('install')
    @on_package_attributes(run_tests=True)
    def install_test(self):
        with working_dir('test'):
            python('run_test.py')