Skip to content
Snippets Groups Projects
Commit 7891e9ae authored by Harry Carey's avatar Harry Carey
Browse files

This commit refactors the PyNutil class to make it more modular and easier to...

This commit refactors the PyNutil class to make it more modular and easier to read and understand. The load_atlas_data method has been extracted to a separate function, and the coordinate extraction, pixel labeling and counting, and writing of points to Meshview have been extracted to separate methods. These changes make the code more modular and easier to maintain.
parents fd78ba58 15d81c39
No related branches found
No related tags found
No related merge requests found
......@@ -36,7 +36,7 @@ label_path = "../annotation_volumes//allen2022_colours.csv"
label_df = pd.read_csv(label_path)
# read the annotation volume, it also has a header but we don't need it
# now we can get the labels for each point
labels = labelPoints(points, data, scale_factor=2.5)
labels = labelPoints(points, data, scale_factor=1)
# save points to a meshview json
WritePointsToMeshview(points, labels, "../outputs/points.json", label_df)
......
......@@ -6,7 +6,6 @@ import json
import pandas as pd
from datetime import datetime
class PyNutil:
def __init__(
self,
......
......@@ -5,7 +5,7 @@
},
"allen2017":{
"labels":"allen2017_colours.csv",
"volume":"annotation_10_reoriented_2017.nrrd"
"volume":"annotation_25_reoriented_2017.nrrd"
},
"allen2022":{
"labels":"allen2022_colours.csv",
......
class Demo:
def __init__(self, test):
self.test = test
def print_test(self):
print(self.test)
self.output = 'success'
\ No newline at end of file
......@@ -3,9 +3,10 @@ import numpy as np
import struct
import pandas as pd
import matplotlib.pyplot as plt
import cv2
"""read flat file and write into an np array"""
np.set_printoptions(suppress=True)
with open(base, "rb") as f:
# i dont know what b is, w and h are the width and height that we get from the
# flat file header
......@@ -27,12 +28,17 @@ with open(base, "rb") as f:
image[y, x] = imagedata[x + y * w]
image_arr = np.array(image)
print(image_arr.shape)
image_arr = cv2.resize(image_arr,(9848,12784),interpolation=cv2.INTER_NEAREST)
print(image_arr.shape)
val,count = np.unique(image_arr, return_counts=True)
print(list(zip(val,count)))
# show image with plt.imshow(image_arr)
"""assign label file values into image array"""
labelfile = pd.read_csv(r"../annotation_volumes\allen2017_colours.csv")
labelfile = pd.read_csv(r"../metadata/annotation_volumes\allen2017_colours.csv")
allen_id_image = np.zeros((h, w)) # create an empty image array
"""for ph in range(h):
......
{ "volume_path": "../annotation_volumes/annotation_10_reoriented_2017.nrrd",
"label_path": "../annotation_volumes/allen2017_colours.csv",
"segmentation_folder": "../test_data/ttA_2877_NOP_s037_seg",
"alignment_json": "../test_data/ttA_2877_NOP_horizontal_final_2017.json",
{ "volume_path": "allen2017",
"label_path": "annotation_volumes/allen2017_colours.csv",
"segmentation_folder": "test_data/ttA_2877_NOP_s037_seg",
"alignment_json": "test_data/ttA_2877_NOP_horizontal_final_2017.json",
"nonlinear": false,
"colour": [0, 0, 255],
"points_json_path": "../outputs/test5_points.json",
"counts_per_label_name": "../outputs/test5_counts_per_allenID_2017_false.csv"
"points_json_path": "outputs/test5_points.json",
"counts_per_label_name": "outputs/test5_counts_per_allenID_2017_false.csv"
}
from PyNutil import PyNutil
pnt = PyNutil(settings_file=r"test/test4_2017.json")
pnt = PyNutil(settings_file=r"test/test5_NOP_s037.json")
# pnt.build_quantifier()
pnt.get_coordinates()
pnt.quantify_coordinates()
pnt.save_analysis("outputs/test4_2017")
pnt.save_analysis("outputs/test5_NOP_25")
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment