Skip to content
Snippets Groups Projects
Commit 35c831fa authored by Jan Fousek's avatar Jan Fousek
Browse files

cleaned up utils

parent aeee6538
No related branches found
No related tags found
No related merge requests found
utils.py 100755 → 100644
# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Scientific Package. This package holds all simulators, and
# analysers necessary to run brain-simulations. You can use it stand alone or
# in conjunction with TheVirtualBrain-Framework Package. See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2017, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as follows:
#
# Paula Sanz Leon, Stuart A. Knock, M. Marmaduke Woodman, Lia Domide,
# Jochen Mersmann, Anthony R. McIntosh, Viktor Jirsa (2013)
# The Virtual Brain: a simulator of primate brain network dynamics.
# Frontiers in Neuroinformatics (7:10. doi: 10.3389/fninf.2013.00010)
#
#
from pylab import *
from tvb.simulator.lab import *
import threading
import numpy
import time
import sys
from matplotlib.tri import Triangulation
from matplotlib import pyplot as plt
class SimThread(threading.Thread):
def set_sim(self, sim, **kwds):
self.sim = sim
self.kwds = kwds
self.t = -1.0
def run(self):
"Convenience method to call the simulator with **kwds and collect output data."
tic = time.time()
ts, xs = [], []
for _ in self.sim.monitors:
ts.append([])
xs.append([])
for data in self.sim(**self.kwds):
for tl, xl, t_x in zip(ts, xs, data):
if t_x is not None:
t, x = t_x
if t > self.t:
self.t = t
tl.append(t)
xl.append(x)
for i in range(len(ts)):
ts[i] = numpy.array(ts[i])
xs[i] = numpy.array(xs[i])
self.results = list(zip(ts, xs))
self.wall_time = time.time() - tic
def formattime(eta):
m = 60
h = m*60
d = 24*h
msg = ''
if eta > d:
msg += '%d day(s), %d hour(s)' % (eta/d, ((eta/h) % 24))
elif eta > h:
msg += '%d hour(s), %d minute(s)' % (eta/h, ((eta/m) % 60))
else:
msg += '%d minute(s), %d seconds(s)' % (eta/m, eta%m)
return msg
def pbpct(p=1e2, eta=None, walltime=None):
i = int(p/2)
msg = '\r[%s%s] %d %%' % ('.'*i, ' '*(50 - i), p)
if eta:
msg += ', ETA: ' + formattime(eta)
elif walltime:
msg += ' Wall Time: ' + formattime(walltime)
sys.stdout.write(msg)
sys.stdout.flush()
def run_sim_with_progress_bar(sim, simulation_length, polltime=1):
tic = time.time()
ar = SimThread()
ar.set_sim(sim, simulation_length=simulation_length)
ar.start()
while True:
prog = ar.t
pct = prog*1e2/simulation_length
toc = time.time() - tic
if pct > 0.0:
time_per_centile = toc / pct
centiles_left = 100 - pct
pbpct(pct, centiles_left * time_per_centile)
else:
pbpct(0.0)
time.sleep(polltime)
if hasattr(ar, 'wall_time'):
pbpct(100.0, walltime=ar.wall_time)
break
return ar.results
cortex = cortex.Cortex().from_file()
def multiview(data, suptitle='', figsize=(15, 10), **kwds):
cs = cortex
vtx = cs.vertices
tri = cs.triangles
rm = cs.region_mapping
x, y, z = vtx.T
lh_tri = tri[(rm[tri] < 38).any(axis=1)]
lh_vtx = vtx[rm < 38]
lh_x, lh_y, lh_z = lh_vtx.T
lh_tx, lh_ty, lh_tz = lh_vtx[lh_tri].mean(axis=1).T
rh_tri = tri[(rm[tri] >= 38).any(axis=1)]
rh_vtx = vtx[rm < 38]
rh_x, rh_y, rh_z = rh_vtx.T
rh_tx, rh_ty, rh_tz = vtx[rh_tri].mean(axis=1).T
tx, ty, tz = vtx[tri].mean(axis=1).T
views = {
'lh-lateral': Triangulation(-x, z, lh_tri[argsort(lh_ty)[::-1]]),
'lh-medial': Triangulation(x, z, lh_tri[argsort(lh_ty)]),
'rh-medial': Triangulation(-x, z, rh_tri[argsort(rh_ty)[::-1]]),
'rh-lateral': Triangulation(x, z, rh_tri[argsort(rh_ty)]),
'both-superior': Triangulation(y, x, tri[argsort(tz)]),
}
def plotview(i, j, k, viewkey, z=None, zlim=None, zthresh=None, suptitle='', shaded=True, cmap=plt.cm.coolwarm, viewlabel=False):
v = views[viewkey]
ax = subplot(i, j, k)
if z is None:
z = rand(v.x.shape[0])
if not viewlabel:
axis('off')
kwargs = {'shading': 'gouraud'} if shaded else {'edgecolors': 'k', 'linewidth': 0.1}
if zthresh:
z = z.copy() * (abs(z) > zthresh)
tc = ax.tripcolor(v, z, cmap=cmap, **kwargs)
if zlim:
tc.set_clim(vmin=-zlim, vmax=zlim)
ax.set_aspect('equal')
if suptitle:
ax.set_title(suptitle, fontsize=24)
if viewlabel:
xlabel(viewkey)
figure(figsize=figsize)
plotview(2, 3, 1, 'lh-lateral', data, **kwds)
plotview(2, 3, 4, 'lh-medial', data, **kwds)
plotview(2, 3, 3, 'rh-lateral', data, **kwds)
plotview(2, 3, 6, 'rh-medial', data, **kwds)
plotview(1, 3, 2, 'both-superior', data, suptitle=suptitle, **kwds)
subplots_adjust(left=0.0, right=1.0, bottom=0.0, top=1.0, wspace=0, hspace=0)
import numpy as np
import matplotlib.pylab as plt
def plot_connectivity(conn):
# Visualization
fig = plt.figure(figsize=(15, 7))
fig.suptitle('TVB SC', fontsize=20)
# Weights
plt.subplot(121)
plt.imshow(conn.weights, interpolation='nearest', aspect='equal', cmap='jet')
plt.xticks(range(0, conn.number_of_regions), conn.region_labels, fontsize=7, rotation=90)
plt.yticks(range(0, conn.number_of_regions), conn.region_labels, fontsize=7)
cb = plt.colorbar(shrink=0.2)
cb.set_label('Weights', fontsize=14)
# Tracts lengths
plt.subplot(122)
plt.imshow(conn.tract_lengths, interpolation='nearest', aspect='equal', cmap='jet')
plt.xticks(range(0, conn.number_of_regions), conn.region_labels, fontsize=7, rotation=90)
plt.yticks(range(0, conn.number_of_regions), conn.region_labels, fontsize=7)
cb = plt.colorbar(shrink=0.2)
cb.set_label('Tract lenghts', fontsize=14)
fig.tight_layout()
plt.show()
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment