Skip to content
Snippets Groups Projects
Ben Cumming's avatar
Benjamin Cumming authored
* Move label and s-expr parsing code and unit tests from Python to arbor C++ library.
* Update `locset` and `region` constructors that take string arguments to parse strings as s-expressions or "quoted" labels.
* Modify the input stream modifier used to parse asc files to use a lookup table for substitutions, renamed it transmogrifier.                                                             
* Replace `hopefully` type implemented in python headers with an `arb::util::expected`.
* Add `ARBDEV_COLOR` CMake option that forces gcc and clang to always output color output.
* Allow arbitrary strings in labels in region and locset expressions.
* Add `parse_region_expression` and `parse_locset_expression` functions alongside the existing `parse_label_expression` function for use when a region or locset is expected. These calls will promote a quoted string `"label"` to `(region "label")` or 
 `(locset "label")` respectively.
* Add user-defined string literals for labels so that the C++ interface can use `"soma"_lab` instead of awkward escaping `"\"soma\""`.
* Simplify Python wrapper code.
3ba5f437

CI status Build Status codecov Gitpod Ready-to-Code

Arbor Library

Arbor is a library for implementing performance portable network simulations of multi-compartment neuron models.

An installation guide and library documentation are available online at Read the Docs.

Submit a ticket or start a discussion if you have any questions or want help.

Citing Arbor

The Arbor software can be cited via Zenodo: DOI.

Previous versions of Arbor can be cited specifically:

  • Version 0.2: DOI
  • Version 0.1: DOI

The following BibTeX entry can be used to cite Arbor:

@INPROCEEDINGS{
    paper:arbor2019,
    author={N. A. {Akar} and B. {Cumming} and V. {Karakasis} and A. {Küsters} and W. {Klijn} and A. {Peyser} and S. {Yates}},
    booktitle={2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)},
    title={{Arbor --- A Morphologically-Detailed Neural Network Simulation Library for Contemporary High-Performance Computing Architectures}},
    year={2019}, month={feb}, volume={}, number={},
    pages={274--282},
    doi={10.1109/EMPDP.2019.8671560},
    ISSN={2377-5750}}

Alternative citation formats for the paper can be downloaded here, and a preprint is available at arXiv.