Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
arbor
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Analyze
Contributor analytics
Repository analytics
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
arbor-sim
arbor
Commits
f7757d16
Commit
f7757d16
authored
9 years ago
by
Benjamin Cumming
Browse files
Options
Downloads
Patches
Plain Diff
more docs
parent
0e37b670
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
docs/formulation.tex
+4
-4
4 additions, 4 deletions
docs/formulation.tex
docs/symbols.tex
+3
-0
3 additions, 0 deletions
docs/symbols.tex
with
7 additions
and
4 deletions
docs/formulation.tex
+
4
−
4
View file @
f7757d16
...
...
@@ -235,7 +235,7 @@ The equations can be rearranged to have all unknown voltage values on the lhs, a
\end{align}
where the value
\begin{equation}
\alpha
_{
ij
}
=
\alpha
_{
ji
}
=
\frac
{
\Delta
t
\sigma
_{
ij
}}{
c
_
m
\Delta
x
_{
ij
}}
\alpha
_{
ij
}
=
\alpha
_{
ji
}
=
\frac
{
\Delta
t
\sigma
_{
ij
}}{
c
_
m
r
_
L
\Delta
x
_{
ij
}}
\label
{
eq:alpha
_
linsys
}
\end{equation}
is a constant that can be computed for each interface between adjacent compartments during set up.
...
...
@@ -248,9 +248,9 @@ For an unrbanched uniform cable of constant radius $a$, with length $L$ and $n$
\Delta
x
_{
ij
}
&
=
\Delta
x =
\frac
{
L
}{
n-1
}
,
\nonumber
\\
\sigma
_{
ij
}
&
=
\pi
a
^
2,
\nonumber
\\
\sigma
_{
i
}
&
= 2
\pi
a
\Delta
x,
\nonumber
\\
\alpha
_{
ij
}
&
=
\frac
{
\pi
a
^
2
\Delta
t
}{
c
_
m
\Delta
x
}
,
\nonumber
\\
\alpha
_{
ij
}
&
=
\frac
{
\pi
a
^
2
\Delta
t
}{
c
_
m
r
_
L
\Delta
x
}
,
\nonumber
\\
\frac
{
\alpha
_{
ij
}}{
\sigma
_
i
}
&
=
\frac
{
a
\Delta
t
}{
2c
_
m
\Delta
x
^
2
}
.
\nonumber
&
=
\frac
{
a
\Delta
t
}{
2c
_
m
r
_
L
\Delta
x
^
2
}
.
\nonumber
\end{align}
With these simplifications, the lhs of the linear system is
\begin{align}
...
...
@@ -258,7 +258,7 @@ With these simplifications, the lhs of the linear system is
\nonumber
\\
=
&
(1+2
\beta
)V
_
i
^{
k+1
}
-
\beta
V
_{
i+1
}^{
k+1
}
-
\beta
V
_{
i-1
}^{
k+1
}
.
\end{align}
where
$
\beta
=
\frac
{
a
\Delta
t
}{
2
c
_
m
\Delta
x
^
2
}$
.
where
$
\beta
=
\frac
{
a
\Delta
t
}{
2
c
_
m
r
_
L
\Delta
x
^
2
}$
.
The end points of the cable, i.e. the compartments for
$
x
_
1
$
and
$
x
_
n
$
, have to be handled differently.
If we assume that a no-flux boundary condition, i.e.
$
\vv
{
J
}
\cdot\vv
{
n
}
=
0
$
, is imposed at the end of the cable, the lhs of the linear system are
...
...
This diff is collapsed.
Click to expand it.
docs/symbols.tex
+
3
−
0
View file @
f7757d16
...
...
@@ -11,6 +11,7 @@
voltage
&
$
V
$
&
volt
$
V
$
&
potential work per unit charge
\\
resistance
&
$
R
$
&
ohm
$
\Omega
$
&
recall Ohm's law
$
V
=
IR
$
\\
capacitance
&
$
C
$
&
farad
$
F
$
&
$
C
=
\frac
{
q
}{
V
}$
,
$
[
J
\cdot
C
^{
2
}
]
$
\\
conductance
&
$
g
$
&
siemens
$
S
$
&
\\
\hline
\end{tabular}
...
...
@@ -35,6 +36,8 @@
$
C
$
&
$
F
$
&
$
C
\cdot
V
^{
-
1
}$
&
$
kg
^{
-
1
}
\cdot
m
^{
-
2
}
\cdot
s
^{
4
}
\cdot
A
^{
2
}$
\\
$
g
$
&
$
S
$
&
$
A
\cdot
V
^{
-
1
}$
&
$
kg
^{
-
1
}
\cdot
m
^{
-
2
}
\cdot
s
^
3
\cdot
A
^
2
$
\\
\hline
\end{tabular}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment