Skip to content
Snippets Groups Projects
Commit f7757d16 authored by Benjamin Cumming's avatar Benjamin Cumming
Browse files

more docs

parent 0e37b670
No related branches found
No related tags found
No related merge requests found
......@@ -235,7 +235,7 @@ The equations can be rearranged to have all unknown voltage values on the lhs, a
\end{align}
where the value
\begin{equation}
\alpha_{ij} = \alpha_{ji} = \frac{\Delta t \sigma_{ij}}{ c_m \Delta x_{ij}}
\alpha_{ij} = \alpha_{ji} = \frac{\Delta t \sigma_{ij}}{ c_m r_L \Delta x_{ij}}
\label{eq:alpha_linsys}
\end{equation}
is a constant that can be computed for each interface between adjacent compartments during set up.
......@@ -248,9 +248,9 @@ For an unrbanched uniform cable of constant radius $a$, with length $L$ and $n$
\Delta x_{ij} &= \Delta x = \frac{L}{n-1}, \nonumber \\
\sigma_{ij} &= \pi a^2, \nonumber \\
\sigma_{i} &= 2 \pi a \Delta x, \nonumber \\
\alpha_{ij} &= \frac{\pi a^2\Delta t}{c_m\Delta x}, \nonumber \\
\alpha_{ij} &= \frac{\pi a^2\Delta t}{c_m r_L\Delta x}, \nonumber \\
\frac{\alpha_{ij}}{\sigma_i}
&= \frac{a\Delta t}{2c_m\Delta x^2}. \nonumber
&= \frac{a\Delta t}{2c_m r_L\Delta x^2}. \nonumber
\end{align}
With these simplifications, the lhs of the linear system is
\begin{align}
......@@ -258,7 +258,7 @@ With these simplifications, the lhs of the linear system is
\nonumber \\
= & (1+2\beta)V_i^{k+1} - \beta V_{i+1}^{k+1} - \beta V_{i-1}^{k+1}.
\end{align}
where $\beta=\frac{a\Delta t}{2c_m\Delta x^2}$.
where $\beta=\frac{a\Delta t}{2c_m r_L\Delta x^2}$.
The end points of the cable, i.e. the compartments for $x_1$ and $x_n$, have to be handled differently.
If we assume that a no-flux boundary condition, i.e. $\vv{J}\cdot\vv{n}=0$, is imposed at the end of the cable, the lhs of the linear system are
......
......@@ -11,6 +11,7 @@
voltage & $V$ & volt $V$ & potential work per unit charge \\
resistance & $R$ & ohm $\Omega$ & recall Ohm's law $V=IR$ \\
capacitance& $C$ & farad $F$ & $C=\frac{q}{V}$, $[J\cdot C^{2}]$\\
conductance& $g$ & siemens $S$ & \\
\hline
\end{tabular}
......@@ -35,6 +36,8 @@
$C$ & $F$ & $C\cdot V^{-1}$ &
$kg^{-1}\cdot m^{-2}\cdot s^{4}\cdot A^{2}$ \\
$g$ & $S$ & $A\cdot V^{-1}$ &
$kg^{-1}\cdot m^{-2}\cdot s^3\cdot A^2$ \\
\hline
\end{tabular}
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment