Skip to content
Snippets Groups Projects
Commit ed5acc11 authored by Benjamin Cumming's avatar Benjamin Cumming
Browse files

add mass balance formulation

parent cee3c6f2
No related branches found
No related tags found
No related merge requests found
......@@ -2,6 +2,7 @@
The cable equation is a nonlinear parabolic PDE that can be written in the form
\begin{equation}
\label{eq:cable}
c_m \pder{V}{t} = \frac{1}{2ar_{L}} \pder{}{x} \left( a^2 \pder{V}{x} \right) - i_m + i_e,
\end{equation}
where
......@@ -16,6 +17,14 @@ where
Note that the standard convention is followed, whereby membrane and synapse currents ($i_m$) are positive when outward, and electrod currents ($i_e$) are positive inward.
The PDE in (\ref{eq:cable}) is derived from the following mass balance expression for a cable segment
\begin{equation}
\label{eq:cable}
2\pi a \Delta x c_m \pder{V}{t} = -\left. \left( \frac{\pi a^2}{r_L}\pder{V}{x} \right) \right|_\text{left}
+\left. \left( \frac{\pi a^2}{r_L}\pder{V}{x} \right) \right|_\text{right}
- 2\pi a \Delta x (i_m - i_e)
\end{equation}
\begin{table*}[htp!]
\begin{center}
......@@ -42,13 +51,17 @@ Note that the standard convention is followed, whereby membrane and synapse curr
$q$ & $C$ & $s\cdot A$ &
$s\cdot A$ \\
$I$ & $A$ & & \\
$I$ & $A$ & $C\cdot s^{-1}$ &
$A$ \\
$V$ & $V$ & &
$V$ & $V$ & $W\cdot A$ &
$kg\cdot m^{2}\cdot s^{-3}\cdot A^{-1}$ \\
$R$ & $\Omega$ & & \\
$C$ & $F$ & & \\
$R$ & $\Omega$ & $V\cdot A^{-1}$ &
$kg\cdot m^{2}\cdot s^{-3}\cdot A^{-2}$ \\
$C$ & $F$ & $C\cdot V^{-1}$ &
$kg^{-1}\cdot m^{-2}\cdot s^{4}\cdot A^{2}$ \\
\hline
\end{tabular}
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment