Skip to content
Snippets Groups Projects
Commit cee3c6f2 authored by Benjamin Cumming's avatar Benjamin Cumming
Browse files

start adding units to documentation

parent 7d6f493b
No related branches found
No related tags found
No related merge requests found
......@@ -7,8 +7,53 @@ The cable equation is a nonlinear parabolic PDE that can be written in the form
where
\begin{itemize}
\item $V$ is the potential relative to the ECM $[mV]$
\item $a$ is the cable radius \todo{units}
\item $a$ is the cable radius \todo{units} $[mm]$?
\item $c_m$ is the {specific membrane capacitance}, approximately the same for all neurons $\approx 10~nF/mm^2$. Related to \emph{membrane capacitance} $C_m$ by the relationship $C_m=c_{m}A$, where $A$ is the surface area of the cell.
\item $i_m$ is the membrane current \todo{units}
\item $i_m$ is the membrane current \todo{units}. The total contribution from ion and synaptic channels is expressed as a the product of current per unit area $i_m$ and the surface area.
\item $i_e$ is the electrode current flowing into the cell, divided by surface area, i.e. $i_e=I_e/A$.
\item $r_L$ is intracellular resistivity, typical value $1~k\Omega$
\end{itemize}
Note that the standard convention is followed, whereby membrane and synapse currents ($i_m$) are positive when outward, and electrod currents ($i_e$) are positive inward.
\begin{table*}[htp!]
\begin{center}
\begin{tabular}{llll}
\hline
quality & symbol & unit & notes \\
\hline
energy & $J$ & joule $j$ & work to push 1 $N$ through 1 $m$ \\
charge & $q$ & coulomb $C$ & $6.25\cdot10^{18}$ electrons, $[A\cdot s]$ \\
current & $I$ & ampere $A$ & $[C\cdot s^{-1}]$, $A$ is SI base unit\\
voltage & $V$ & volt $V$ & potential work per unit charge \\
resistance & $R$ & ohm $\Omega$ & recall Ohm's law $V=IR$ \\
capacitance& $C$ & farad $F$ & $C=\frac{q}{V}$, $[J\cdot C^{2}]$\\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline
symbol & unit & equivalents & SI base \\
\hline
$J$ & $j$ & $J\cdot s^{-1}$, $V\cdot A$ &
$kg\cdot m^{2}\cdot s^{-2}$ \\
$q$ & $C$ & $s\cdot A$ &
$s\cdot A$ \\
$I$ & $A$ & & \\
$V$ & $V$ & &
$kg\cdot m^{2}\cdot s^{-3}\cdot A^{-1}$ \\
$R$ & $\Omega$ & & \\
$C$ & $F$ & & \\
\hline
\end{tabular}
\end{center}
\caption{Symbols and quantities.}
\end{table*}
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment