Skip to content
Snippets Groups Projects
Commit 8dbdde31 authored by Sam Yates's avatar Sam Yates
Browse files

Remove tabs

parent 1579e2c4
No related branches found
No related tags found
No related merge requests found
......@@ -54,16 +54,16 @@ is the reversal potential.
\begin{table}[ht]
\centering
\begin{tabular}{lSl}
\toprule
Term & {Value} & Property\\
\midrule
$d$ & \SI{1.0}{\um} & cable diameter \\
$L$ & \SI{1.0}{\mm} & cable length \\
$R_A$ & \SI{1.0}{\ohm\m} & bulk axial resistivity \\
$R_M$ & \SI{4.0}{\ohm\m\squared} & areal membrane resistivity \\
$C_M$ & \SI{0.01}{\F\per\m\squared} & areal membrane capacitance \\
$E_M$ & \SI{-65.0}{\mV} & membrane reversal potential \\
\bottomrule
\toprule
Term & {Value} & Property\\
\midrule
$d$ & \SI{1.0}{\um} & cable diameter \\
$L$ & \SI{1.0}{\mm} & cable length \\
$R_A$ & \SI{1.0}{\ohm\m} & bulk axial resistivity \\
$R_M$ & \SI{4.0}{\ohm\m\squared} & areal membrane resistivity \\
$C_M$ & \SI{0.01}{\F\per\m\squared} & areal membrane capacitance \\
$E_M$ & \SI{-65.0}{\mV} & membrane reversal potential \\
\bottomrule
\end{tabular}
\caption{Cable properties for the Rallpack 1 model.}
\label{tbl:rallpack1}
......@@ -87,9 +87,9 @@ and the linear membrane capacitance $c$. These determine $\lambda$ and $\tau$ by
With the model boundary conditions,
\begin{subequations}
\begin{align}
v(x, 0) &= E, \\
\left.\frac{\partial v}{\partial x}\right\vert_{x=0} & = -Ir, \\
\left.\frac{\partial v}{\partial x}\right\vert_{x=L} & = 0,
v(x, 0) &= E, \\
\left.\frac{\partial v}{\partial x}\right\vert_{x=0} & = -Ir, \\
\left.\frac{\partial v}{\partial x}\right\vert_{x=L} & = 0,
\end{align}
\end{subequations}
where $I$ is the injected current and $L$ is the cable length.
......@@ -98,18 +98,18 @@ The solution $v(x, t)$ can be expressed in terms of the solution $g(x, t; L)$
to a normalized version of the cable equation,
\begin{subequations}
\begin{align}
\label{eq:normcable}
\frac{\partial^2 g}{\partial x^2} & =
\frac{\partial g}{\partial t} + g,
\label{eq:normcable}
\frac{\partial^2 g}{\partial x^2} & =
\frac{\partial g}{\partial t} + g,
\\
\label{eq:normcableinitial}
g(x, 0) &= 0,
\\
\label{eq:normcableleft}
\left.\frac{\partial g}{\partial x}\right\vert_{x=0} & = 1,
\\
\label{eq:normcableright}
\left.\frac{\partial g}{\partial x}\right\vert_{x=L} & = 0
\label{eq:normcableinitial}
g(x, 0) &= 0,
\\
\label{eq:normcableleft}
\left.\frac{\partial g}{\partial x}\right\vert_{x=0} & = 1,
\\
\label{eq:normcableright}
\left.\frac{\partial g}{\partial x}\right\vert_{x=L} & = 0
\end{align}
\end{subequations}
by
......@@ -158,7 +158,7 @@ and thus
Consequently,
\begin{equation}
\begin{aligned}
G(x, s) &= \frac{1}{ms}\cdot\frac{e^{mx}+e^{2mL-mx}}{1-e^{2mL}}\\
G(x, s) &= \frac{1}{ms}\cdot\frac{e^{mx}+e^{2mL-mx}}{1-e^{2mL}}\\
&= - \frac{1}{ms}\cdot\frac{\cosh m(L-x)}{\sinh mL}.
\end{aligned}
\end{equation}
......@@ -199,10 +199,10 @@ arising from $m=\sqrt{1+s}$, as letting $m=-\sqrt{1+s}$ leaves $G$ unchanged.
For $|s+1|>\epsilon$,
\begin{equation}
\begin{aligned}
|s^{3/2}G(x,s)|^2
& \leq (1+\epsilon)^{-1} \left| \frac{\cosh m(L-x)}{\sinh mL} \right|^2
\\
& \leq (1+\epsilon)^{-1} (1+|\coth mL|)^2
|s^{3/2}G(x,s)|^2
& \leq (1+\epsilon)^{-1} \left| \frac{\cosh m(L-x)}{\sinh mL} \right|^2
\\
& \leq (1+\epsilon)^{-1} (1+|\coth mL|)^2
\label{eq:gbounds}
\end{aligned}
\end{equation}
......@@ -218,8 +218,8 @@ Recalling $m=\sqrt{1+s}$, $m$ and $\sinh mL$ are non-zero in
a neighbourhood of $s=0$, and so the pole is simple and
\begin{equation}
\begin{aligned}
\Res(G; 0) & = - \frac{1}{m}\cdot\left.\frac{\cosh m(L-x)}{\sinh mL}\right|_{s=0}\\
& = - \frac{\cosh (L-x)}{\sinh L}.
\Res(G; 0) & = - \frac{1}{m}\cdot\left.\frac{\cosh m(L-x)}{\sinh mL}\right|_{s=0}\\
& = - \frac{\cosh (L-x)}{\sinh L}.
\end{aligned}
\end{equation}
......@@ -235,9 +235,9 @@ Let $G(x,s)=f(x,s)/h(s)$, where
Noting that $dm/ds = \frac{1}{2}m^{-1}$,
\begin{equation}
\begin{aligned}
h'(s) &= \frac{1}{2}m^{-1}\sinh mL + \frac{1}{2}L\cosh mL \\
&= \frac{1}{2}L + \frac{1}{2}L + O(m^2) \quad(m\to 0) \\
&= L + O(s+1) \quad(s\to -1).
h'(s) &= \frac{1}{2}m^{-1}\sinh mL + \frac{1}{2}L\cosh mL \\
&= \frac{1}{2}L + \frac{1}{2}L + O(m^2) \quad(m\to 0) \\
&= L + O(s+1) \quad(s\to -1).
\label{eq:hprime}
\end{aligned}
\end{equation}
......@@ -255,11 +255,11 @@ $m_k$ is non-zero for $k\geq 1$ and
Consequently the pole is simple and
\begin{equation}
\begin{aligned}
\Res(G; s_k)
& = f(x, s_k)/h'(s_k)\\
& = -\frac{2}{s_k L}\frac{\cosh m_k(L-x)}{\cosh m_kL} \\
& = -\frac{2}{s_k L}\frac{\cosh m_kL\cosh m_kx-\sinh m_kL\sinh m_kL}{\cosh m_kL} \\
& = -\frac{2}{s_k L}\cosh m_k x,
\Res(G; s_k)
& = f(x, s_k)/h'(s_k)\\
& = -\frac{2}{s_k L}\frac{\cosh m_k(L-x)}{\cosh m_kL} \\
& = -\frac{2}{s_k L}\frac{\cosh m_kL\cosh m_kx-\sinh m_kL\sinh m_kL}{\cosh m_kL} \\
& = -\frac{2}{s_k L}\cosh m_k x,
\end{aligned}
\end{equation}
as $\sinh m_k=0$.
......@@ -272,7 +272,7 @@ In terms of $a_k$,
The series exapnsion for $g(x, t)$ therefore is
\begin{equation}
g(x, t) = -\frac{\cosh(L-x)}{\sinh L} + \frac{1}{L}e^{-t}\left\{
1+2\sum_{k=1}^\infty \frac{e^{-ta_k^2}}{1+a_k^2}\cos a_k x\right\}.
1+2\sum_{k=1}^\infty \frac{e^{-ta_k^2}}{1+a_k^2}\cos a_k x\right\}.
\label{eq:theg}
\end{equation}
......@@ -285,16 +285,16 @@ of stopping criteria for a given tolerance.
Let $g_n$ be the partial sum
\begin{equation}
g_n(x, t) = -\frac{\cosh(L-x)}{\sinh L} + \frac{1}{L}e^{-t}\left\{
1+2\sum_{k=1}^n \frac{e^{-ta_k^2}}{1+a_k^2}\cos a_k x\right\}.
1+2\sum_{k=1}^n \frac{e^{-ta_k^2}}{1+a_k^2}\cos a_k x\right\}.
\end{equation}
so that $g(x, t) =\lim_{n\to\infty} g_n(x,t)$. Let $\bar{g}_n = |g-g_n|$ be the
residual. The $a_k$ form an increasing sequence, so
\begin{equation}
\begin{aligned}
\bar{g}_n(x,t)
& \leq \frac{2}{L}e^{-t}\sum_{n+1}^\infty\frac{e^{-ta_k^2}}{1+a_k^2}\\
& \leq \frac{2}{L}e^{-t}\int_{a_n}^\infty \frac{e^{-tu^2}}{1+u^2}\,du\\
& < \frac{2}{L}e^{-t}\int_{a_n}^\infty \frac{e^{-tu^2}}{u^2}\,du.
\bar{g}_n(x,t)
& \leq \frac{2}{L}e^{-t}\sum_{n+1}^\infty\frac{e^{-ta_k^2}}{1+a_k^2}\\
& \leq \frac{2}{L}e^{-t}\int_{a_n}^\infty \frac{e^{-tu^2}}{1+u^2}\,du\\
& < \frac{2}{L}e^{-t}\int_{a_n}^\infty \frac{e^{-tu^2}}{u^2}\,du.
\end{aligned}
\label{eq:gbar}
\end{equation}
......@@ -313,9 +313,9 @@ For real $\alpha<1$ and $z>0$, \textcite[][Theorem 2.3]{borwein2009} give the up
Substituting into \eqref{eq:gbar} gives
\begin{equation}
\begin{aligned}
\bar{g}_n(x,t)
& < \frac{1}{L}e^{-t}\sqrt{t}\,\Gamma(-\frac{1}{2},a_n^2 t) \\
& \leq \frac{1}{L}e^{-t}\sqrt{t}\,(a_n^2 t)^{-\frac{3}{2}}e^{-a_n^2t} \\
\bar{g}_n(x,t)
& < \frac{1}{L}e^{-t}\sqrt{t}\,\Gamma(-\frac{1}{2},a_n^2 t) \\
& \leq \frac{1}{L}e^{-t}\sqrt{t}\,(a_n^2 t)^{-\frac{3}{2}}e^{-a_n^2t} \\
& = \frac{e^{-t(1+a_n^2)}}{L t a_n^3}.
\end{aligned}
\end{equation}
......
......@@ -38,7 +38,7 @@ foreach(target ${TARGETS})
)
if(BUILD_VALIDATION_DATA)
add_dependencies(${target} validation_data)
add_dependencies(${target} validation_data)
endif()
endforeach()
......@@ -31,10 +31,10 @@ function(add_validation_data)
set(out "${VALIDATION_DATA_DIR}/${ADD_VALIDATION_DATA_OUTPUT}")
string(REGEX REPLACE "([^;]+)" "${CMAKE_CURRENT_SOURCE_DIR}/\\1" deps "${ADD_VALIDATION_DATA_DEPENDS}")
add_custom_command(
OUTPUT "${out}"
OUTPUT "${out}"
DEPENDS ${deps}
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
COMMAND ${ADD_VALIDATION_DATA_COMMAND} > "${out}")
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
COMMAND ${ADD_VALIDATION_DATA_COMMAND} > "${out}")
# Cmake, why can't we just write add_dependencies(validation_data "${out}")?!
make_unique_target_name(ffs_cmake "${out}")
......
......@@ -11,7 +11,7 @@ set(models
foreach(model ${models})
set(script "${model}.py")
add_validation_data(
OUTPUT "neuron_${model}.json"
OUTPUT "neuron_${model}.json"
DEPENDS "${script}" "nrn_validation.py"
COMMAND ${NRNIV_BIN} -nobanner -python "${script}")
endforeach()
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment