Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
arbor
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Analyze
Contributor analytics
Repository analytics
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
arbor-sim
arbor
Commits
7a988638
Commit
7a988638
authored
8 years ago
by
Sam Yates
Browse files
Options
Downloads
Patches
Plain Diff
More minor fixes to cable computation document.
parent
9447f196
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
docs/passive_cable/cable_computation.tex
+12
-11
12 additions, 11 deletions
docs/passive_cable/cable_computation.tex
with
12 additions
and
11 deletions
docs/passive_cable/cable_computation.tex
+
12
−
11
View file @
7a988638
...
...
@@ -52,7 +52,6 @@ is injected at the left end of the cable from $t=0$, and the initial potential
is the reversal potential.
\begin{table}
[ht]
\label
{
tbl:rallpack1
}
\centering
\begin{tabular}
{
lSl
}
\toprule
...
...
@@ -67,6 +66,7 @@ is the reversal potential.
\bottomrule
\end{tabular}
\caption
{
Cable properties for the Rallpack 1 model.
}
\label
{
tbl:rallpack1
}
\end{table}
The potential on a constant-radius passive cable is governed by the PDE
...
...
@@ -132,7 +132,7 @@ From
The boundary conditions
\eqref
{
eq:normcableleft
}
and
\eqref
{
eq:normcableright
}
give
\begin{align}
\label
{
eq:lapleft
}
\frac
{
\partial
G
}{
\partial
x
}
(0, s)
&
=
\frac
{
1
}{
s
}
,
\frac
{
\partial
G
}{
\partial
x
}
(0, s)
&
=
\frac
{
1
}{
s
}
\\
\label
{
eq:lapright
}
\frac
{
\partial
G
}{
\partial
x
}
(L, s)
&
= 0.
...
...
@@ -144,12 +144,13 @@ Solutions to \eqref{eq:lap} must be of the form
\end{equation}
where
$
m
=
\sqrt
{
1
+
s
}$
. From
\eqref
{
eq:lapleft
}
and
\eqref
{
eq:lapright
}
,
\begin{align*}
mA(s) - mB(s)
&
=
\frac
{
1
}{
s
}
,
mA(s) - mB(s)
&
=
\frac
{
1
}{
s
}
\\
mA(s)e
^{
mL
}
-mB(s)e
^{
-mL
}
&
= 0.
\end{align*}
and thus
mA(s)e
^{
mL
}
-mB(s)e
^{
-mL
}
&
= 0
\end{align*}
and thus
\begin{align*}
A(s)
&
=
\frac
{
1
}{
sm (1-e
^{
2mL
}
)
}
,
A(s)
&
=
\frac
{
1
}{
sm (1-e
^{
2mL
}
)
}
\\
B(s)
&
=
\frac
{
e
^{
2mL
}}{
sm (1-e
^{
2mL
}
)
}
.
\end{align*}
...
...
@@ -166,7 +167,7 @@ Consequently,
Sufficient conditions for the inverse transform of
$
G
(
x,s
)
$
to exist
and be representable in series form are as follows
\parencite
[][Theorem 4]
{
churchill1937
}
)
:
\parencite
[][Theorem 4]
{
churchill1937
}
:
\begin{enumerate}
\item
$
G
(
x, s
)
$
is analytic in some right half-plane
$
H
$
,
...
...
@@ -213,7 +214,7 @@ $2k\pi\delta/L+\delta^2$ about $s_k$ for $k\geq 1$, which then are separated by
circles
$
|s|
=
\rho
_
k
$
about the origin for some
$
\rho
_
k
$
in
$
(
|s
_
k|, |s
_
k
+
1
|
)
$
.
\textbf
{
Pole at
$
s
=
0
$}
.
\\
Recalling
$
m
=
\sqrt
{
1
+
s
}$
,
$
m
$
and
$
\sinh
mL
$
are non-zero in
\\
Recalling
$
m
=
\sqrt
{
1
+
s
}$
,
$
m
$
and
$
\sinh
mL
$
are non-zero in
a neighbourhood of
$
s
=
0
$
, and so the pole is simple and
\begin{equation}
\begin{aligned}
...
...
@@ -257,7 +258,7 @@ Consequently the pole is simple and
\Res
(G; s
_
k)
&
= f(x, s
_
k)/h'(s
_
k)
\\
&
= -
\frac
{
2
}{
s
_
k L
}
\frac
{
\cosh
m
_
k(L-x)
}{
\cosh
m
_
kL
}
\\
&
= -
\frac
{
2
}{
s
_
k L
}
\frac
{
\cosh
m
_
kL
\cosh
m
_
kx-
\sinh
m
_
kL
\sinh
m
_
kL
)
}{
\cosh
m
_
kL
}
\\
&
= -
\frac
{
2
}{
s
_
k L
}
\frac
{
\cosh
m
_
kL
\cosh
m
_
kx-
\sinh
m
_
kL
\sinh
m
_
kL
}{
\cosh
m
_
kL
}
\\
&
= -
\frac
{
2
}{
s
_
k L
}
\cosh
m
_
k x,
\end{aligned}
\end{equation}
...
...
@@ -297,10 +298,10 @@ residual. The $a_k$ form an increasing sequence, so
\end{aligned}
\label
{
eq:gbar
}
\end{equation}
Substituting
$
u
=
v
/
\sqrt
{
t
}$
gives the identity
Substituting
$
u
=
\sqrt
{
v
/
t
}$
gives the identity
\begin{equation}
\int
_{
a
}^
\infty
\frac
{
e
^{
-tu
^
2
}}{
u
^
2
}
\,
du
=
\frac
{
1
}{
2
}
\sqrt
{
t
}
\int
_{
a
^
2t
}^
\infty
e
^{
-v
}
v
^{
\frac
{
-3
}{
2
}}
\,
dv
=
\frac
{
1
}{
2
}
\sqrt
{
t
}
\int
_{
a
^
2t
}^
\infty
e
^{
-
t
v
}
v
^{
\frac
{
-3
}{
2
}}
\,
dv
=
\frac
{
1
}{
2
}
\sqrt
{
t
}
\,\Gamma
(-
\frac
{
1
}{
2
}
,a
^
2 t),
\end{equation}
where
$
\Gamma
(
\alpha
, z
)
$
is the upper incomplete gamma function.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment