Skip to content
Snippets Groups Projects
Commit 07a9fa2f authored by Sam Yates's avatar Sam Yates Committed by Benjamin Cumming
Browse files

New analysis for passive cable equation (#842)

* Replace derivation of cylindrical cable equation formula with S–L approach.
* Relate analysis of cylindrical form to Rallpack 1 in a separate section.
* Add analysis of tapered cable case.
* Unify discussion of cable with constant electrical properties but varying geometry.
* Add section describing how one can well-estimate the inter-cell flux given point samples or CV means for the membrane voltage.
parent 025bed06
No related branches found
No related tags found
No related merge requests found
......@@ -44,12 +44,10 @@
*.fls
*.bbl
# cmake
CMakeFiles
CMakeCache.txt
cmake_install.cmake
Makefile
# mechanisms generated from .mod files
mechanisms/multicore/*.hpp
......
SOURCES := cable_computation.tex
SOURCES := cable_equation.tex
LATEXMK := latexmk -e '$$clean_ext=q/bbl run.xml/' -xelatex -use-make -halt-on-error
LATEXMK := latexmk -e '$$clean_ext=q/bbl xdv thm run.xml/' -xelatex -use-make -halt-on-error
all: cable_computation.pdf
all: cable_equation.pdf
cable_computation.pdf: cable_computation.tex cable.bib
cable_equation.pdf: cable_equation.tex # cable.bib
$(LATEXMK) $<
clean:
......
......@@ -31,3 +31,40 @@
year = {2009},
doi = {10.7153/mia-12-10}
}
@article{sorolla2013,
title = {Algorithm to calculate a large number of roots of the cross-product of {B}essel functions},
author = {Edén Sorolla and Juan R. Mosig and Michael Mattes},
journal = {{IEEE} Transactions on Antennas and Propagation},
volume = {61},
number = {4},
month = {4},
year = {2013},
doi = {10.1109/TAP.2012.2231929}
}
@misc{nistdlmf,
title = {{NIST} Digital Library of Mathematical Functions (Release 1.0.23)},
editor = {F. W. J. Olver and A. B. {Olde Daalhuis} and D. W. Lozier and B. I. Schneider and R. F. Boisvert and C. W. Clark and B. R. Miller and B. V. Saunders},
url = {http://dlmf.nist.gov},
urldate = {2019-06-15}
}
@article{lommel1879,
title = {Zur Theorie der Bessel'schen Functionen},
author = {E. Lommel},
journal = {Mathematische Annalen},
volume = {14},
issue = {4},
year = {1879},
pages = {510--536}
}
@book{reid1980,
title = {{S}turmian theory for ordinary differential equations},
author = {William Thomas Reid},
year = {1980},
publisher = {Springer-Verlag},
location = {New York},
doi = {10.1007/978-1-4612-6110-0}
}
\documentclass[parskip=half]{scrartcl}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[citestyle=authoryear-icomp,bibstyle=authoryear]{biblatex}
\usepackage{booktabs}
\usepackage[style=british]{csquotes}
\usepackage{fontspec}
\usepackage{mathtools}
\usepackage{ntheorem}
\usepackage{siunitx}
\usepackage{tikz}
\usetikzlibrary{angles,calc,intersections,quotes}
\usepackage[p,osf]{cochineal}
\usepackage[cochineal,vvarbb]{newtxmath}
\usepackage[cal=boondoxupr,calscaled=1.0]{mathalfa}
\newfontfamily\dispfamily{Cabin}[Scale=0.95]
\addtokomafont{disposition}{\dispfamily}
\MakeAutoQuote{«}{»}
\DeclareMathOperator{\Res}{Res}
\addbibresource{cable.bib}
\newcommand{\Int}[2]{\int_{#1}^{#2}\!}
\newcommand{\D}{\mathop{}\!d}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\cC}{\mathcal{C}}
\theoremstyle{nonumberplain}
\newtheorem{lemma*}{Lemma}
\newenvironment{proof}{\textbf{Proof.}}{\hfill$\square$}
\title{Analytic solutions to the cable equation}
\author{Sam Yates}
%\date{July 29, 2019}
\sisetup{mode=text}
\begin{document}
% Work-around for siunitx vs newtxmath bug
\ExplSyntaxOn
\cs_undefine:N \c__siunitx_minus_tl
\tl_const:Nn \c__siunitx_minus_tl { - }
\ExplSyntaxOff
\maketitle
\section{The cable equation}
The cable equation describes the evolution of the potential
on a long, thin, conducting cable in a conducting medium, separated
by a leaky dielectric. It assumes that the behaviour
can be modelled entirely as a one dimensional problem,
in terms of the linear conductivity of the cable $\sigma$,
and the conductance $g$ and capacitance $c$ per unit length of the
dielectric. The potential $v(x, t)$ then satisfies
\begin{equation}
(\sigma v')' = c \dot v + g v.
\end{equation}
where $f'$ denotes the derivative of $f$ with respect to the first
variable, and $\dot{f}$ the derivative with respect to the second.
The quantities $\sigma$, $g$, and $c$ are functions of position,
and will depend on the electrical and geometrical properties of
the system.
For a cable of radius $r(x)$ with constant bulk resistivity
$R_L$, areal capacitance $C_M$ and areal surface resistivity
$R_M$, these parameters are given by
\begin{align}
\sigma(x) &= \pi r(x)^2 / R_L, \\
g(x) &= 2 \pi r(x) \sqrt{1 + r'(x)^2} / R_M, \\
c(x) &= 2 \pi r(x) \sqrt{1 + r'(x)^2} C_M.
\end{align}
Letting $\theta(x) = \arctan r'(x)$, the cable equation becomes
\begin{equation}
\label{eq:constelec}
\frac{R_M}{2 R_L}\left(
2\sin\theta\cdot v' + r \cos\theta\cdot v''
\right) =
R_M C_M \dot v + v.
\end{equation}
\section{Analytic solutions for $v(x, t)$}
Two important special cases for the cable equation are the cylinder,
with $r(x)$ constant and $\theta(x)=0$, and the conical frustum,
with $\theta(x)$ constant and $r(x)=x\tan\theta$.
Given constant electrical properties, as in \eqref{eq:constelec},
a zero voltage at $t=0$, and Neumann boundary conditions, what
is $v(x, t)$? The Rallpack 1 model \autocite{bhalla1992} is
an example of such a passive cable model, and is discussed in
Appendix \ref{ap:rallpack}.
\subsection{The cylinder}
Suppose the cable lies on the interval $[0, B]$, with initial
voltage zero, zero current
at $x=0$, and fixed injected current $I$ at $x=B$. The boundary
conditions are then $v(x,0) = 0$, $v'(0, t) = 0$, and $v'(B, t) = -E$,
where $-E = I\cdot R_L/\pi r^2$.
A change of variables gives
\begin{equation}
v(x, t) = -\lambda E\cdot u(x/\lambda, t/\tau),
\end{equation}
where
\begin{equation}
\lambda = \sqrt{\frac{R_M r}{2 R_L}}, \quad \tau = R_M C_M, \quad b = B/\lambda,
\end{equation}
and $u$ satisfies
\begin{equation}
\begin{aligned}
u''(x, t) &= \dot u(x, t) + u(x, t),\\
u(x, 0) &= 0,\\
u'(0, t) &= 0,\\
u'(b, t) &= 1.
\end{aligned}
\label{eq:ucyl}
\end{equation}
The corresponding time-invariant problem has solution $\hat u(x)$ where
\begin{equation}
\hat u'' = \hat u,\quad \hat u'(0) = 0,\quad \hat u'(b) = 1,
\end{equation}
giving
\begin{equation}
\hat u(x) = \frac{\cosh x}{\sinh b}.
\end{equation}
Consider separable transient solutions $u(x,t)-\hat u(x)$, with zero derivative
at $x=0$ and $x=b$, of the form $\psi(x)\eta(t)$. From \eqref{eq:ucyl},
$\eta(t)=e^{-\lambda t}$ for some $\lambda$ and $\psi$ satisfies
\begin{gather}
\label{eq:efncyl}
\psi'' + (\lambda-1)\psi = 0,\\
\label{eq:efncylbc}
\quad \psi'(0)=\psi'(b)=0.
\end{gather}
This is a regular Sturm-Liouville problem
\autocite[see e.g.][Theorem~2.1, p.~146]{reid1980} with discrete non-negative eigenvalues
$\lambda_k-1$ and corresponding orthogonal eigenfunctions $\psi_k$,
\begin{equation}
\langle \psi_k, \psi_{k'} \rangle =
\Int{0}{b} \psi_k(x)\psi_{k'}(x) \D x =0\quad\text{if $k\neq k'$}.
\end{equation}
The least eigenvalue corresponds to $\lambda_0 = 1$ with eigenfunction
$\psi_0(x)=1$.
For $\lambda>1$, \eqref{eq:efncyl} gives
$\psi(x) = c_1\cos\sqrt{\lambda-1}x + c_2\sin\sqrt{\lambda-1}x$. From $\psi'(0)=0$,
we have $c_2=0$. From $\psi'(b)=1$, it follows $c_1=0$ or $\sqrt{\lambda-1}b = k\pi$
for some positive integer $k$. Consequently we have eigenvalues and eigenfunctions,
\begin{gather}
\label{eq:lkcyl}
\lambda_k = 1+\left(\frac{k\pi}{b}\right)^{\mathrlap{2}},\\
\psi_k(x) = \cos \frac{k\pi x}{b}.
\end{gather}
for integers $k\geq 0$, including the constant $\lambda=1$ case.
The time-dependent solution $u(x, t)$ then is
\begin{equation}
u(x,t) = \hat u(x) - \sum_{k=0}^{\infty} a_k e^{-\lambda_k t}\psi_k(x),
\end{equation}
with $a_k$ determined by the initial conditions,
\begin{equation}
0 = \langle u(x,0), \psi_k(x) \rangle
= \langle \hat u(x), \psi_k(x) \rangle
- a_k\langle \psi_k(x), \psi_k(x)\rangle,
\end{equation}
with
\begin{align}
\langle \hat u(x), \psi_k(x) \rangle
= \frac{1}{\sinh b}\Int{0}{b}\cosh x\cos\frac{k\pi}{b}x \D x
= (-1)^k\lambda_k^{-1},
\intertext{and}
\langle \psi_k(x), \psi_k(x) \rangle
= \Int{0}{b}\cos^2 \frac{k\pi}{b}x \D x
=
\begin{cases}
b & \text{if $k=0$,}\\
\frac{b}{2} & \text{otherwise.}\\
\end{cases}
\end{align}
Consequently,
\begin{equation}
\label{eq:cylseries}
u(x,t) = \frac{\cosh x}{\sinh b} - \frac{1}{b}e^{-t} -
\frac{2}{b}\sum_{k=1}^{\infty} (-1)^k \lambda_k^{-1} e^{-\lambda_k t} \cos\frac{k\pi x}{b},
\end{equation}
with $\lambda_k$ given in \eqref{eq:lkcyl}. A discussion on the residuals in this series can
be found in Appendix~\ref{ap:cylcomp}.
Note that the time derivative $\dot u(x,t)$ can be expressed in terms of Jacobi theta functions:
\begin{equation}
\begin{aligned}
\dot u(x,t) &= \frac{1}{b}e^{-t}\left(1+2\sum_{k=1}^{\infty} (-1)^ke^{-\frac{\pi^2 k^2 t}{b}}\cos\frac{k\pi x}{b}\right)\\
&= \frac{1}{b}e^{-t}\theta_4\left(\frac{\pi x}{2 b}\middle| \frac{i\pi t}{b^2}\right).
\end{aligned}
\end{equation}
\subsection{The tapered cable}
Consider the cable as a conical frustum on the interval $[A, B]$ with radius
$r(x) = x \tan\theta$ and boundary conditions $v'(A, t) = 0$, $v'(B, t) = -E$,
and $v(x, 0) = 0$ (see Figure \ref{fig:tapered}). A fixed injecting current $I$
at $x=B$ corresponds to $-E=I\cdot R_L/\pi r(B)^2$. Reparameterizing gives
\begin{equation}
v(x, t) = -\lambda E\cdot u(x/\lambda, t/\tau),
\end{equation}
where
\begin{equation}
\lambda = \frac{R_M\sin\theta}{2 R_L}, \quad \tau = R_M C_M, \quad a = A/\lambda, \quad b = B/\lambda,
\end{equation}
and $u$ satisfies
\begin{equation}
\label{eq:conu}
\begin{aligned}
x u''(x, t) + 2 u'(x, t) &= \dot u(x, t) + u(x, t),\\
u(x, 0) &= 0,\\
u'(a, t) &= 0,\\
u'(b, t) &= 1.
\end{aligned}
\end{equation}
\begin{figure}[tbh]
\begin{tikzpicture}[scale=0.8]
\coordinate (origin) at (0,0);
\coordinate (b0) at (15,0);
\coordinate (b1) at ($ (b0) + (0,1.8) $);
\coordinate (a0) at (5,0);
\path [name path=tangent] (origin) -- (b1);
\path [name path=avert] (a0) -- +(0,2);
\path [name intersections={of=tangent and avert, by=a1}];
\coordinate (a-1) at ($ (a1)!2!(a0) $);
\coordinate (b-1) at ($ (b1)!2!(b0) $);
\draw [name path=axis, dashed] (origin) -- (b0);
\draw let \p1 = (a1), \n2 = {0.2*\y1} in
(a1) arc (90:270:\n2 and \y1);
\draw let \p1 = (a1), \n2 = {0.2*\y1} in
[densely dotted] (a-1) arc (-90:90:\n2 and \y1);
\draw let \p1 = (b1), \n2 = {0.2*\y1} in
(b0) ellipse (\n2 and \y1);
\draw (a1) -- (b1) (a-1) -- (b-1);
\draw [dotted] (origin) -- (a1) (origin) -- (a-1);
\pic [draw, "$\theta$", angle radius = 15ex, angle eccentricity=1.2] {angle = b0--origin--b1};
\coordinate (lright) at ($ (b1)!2!(b0) - (0,40pt) $);
\coordinate (lleft) at ($ (origin) + (lright) - (b0) $);
\path (lleft) node (x0label) { $x=0$ };
\path (lright) node (xblabel) { $x=B =b\lambda $ };
\path ($ (lleft)!(a0)!(lright) $) node (xalabel) { $x=A =a\lambda$ };
\draw [dotted] ($ (a-1)-(0,2ex) $) -- ($ (xalabel)+(0,2ex) $);
\draw [dotted] ($ (b-1)-(0,2ex) $) -- ($ (xblabel)+(0,2ex) $);
\draw [dotted] ($ (origin)-(0,2ex) $) -- ($ (x0label)+(0,2ex) $);
\end{tikzpicture}
\caption{Tapered cable coordinates.}
\label{fig:tapered}
\end{figure}
Proceeding similarly to the cylinder problem, the solution can be presented as a sum of
a time-invariant solution $\hat u$ and a series of transients that are solutions to
a Sturm--Liouville problem.
The time-invariant problem is
\begin{equation}
\begin{gathered}
x\hat u''(x) + 2\hat u'(x) - \hat u(x) = 0,\\
\hat u'(a) = 0,\quad \hat u'(b) = 1.
\end{gathered}
\end{equation}
Multiplying by $x$ gives a differential equation of the form
\begin{equation}
\label{eq:conicmu}
x^2 g''(x) + 2x g'(x) + \mu x g(x) = 0
\end{equation}
for some $\mu$. This has solutions in terms of Bessel functions.
If $\cC_\nu$ is a solution to the Bessel equation
\begin{equation}
z^2 f''(z) + z f'(z) - (z^2 - \nu^2) f(z) = 0,
\end{equation}
then $g(x) = x^{-\frac{1}{2}}\cC_1(\alpha x^\frac{1}{2})$ satisfies
\begin{equation}
\label{eq:besg}
x^2 g''(x) + 2x g'(x) + \frac{\alpha^2}{4} x g(x) = 0.
\end{equation}
Similarly, if $\cZ_\nu$ is a solution to the modified Bessel equation
\begin{equation}
z^2 f''(z) + z f'(z) - (z^2 + \nu^2) f(z) = 0,
\end{equation}
then $g(x) = x^{-\frac{1}{2}}\cZ_1(\alpha x^\frac{1}{2})$ satisfies
\begin{equation}
\label{eq:modbesg}
x^2 g''(x) + 2x g'(x) - \frac{\alpha^2}{4} x g(x) = 0.
\end{equation}
The time-invariant solution $\hat u(x)$ satisfies \eqref{eq:modbesg} with $\alpha=2$, and so
can be written as
\begin{equation}
\hat u(x) = \frac{1}{\sqrt{x}} \left(c_1 I_1(2\sqrt{x}) - c_2 K_1(2\sqrt{x})\right),
\end{equation}
with derivative
\begin{equation}
\hat u'(x) = \frac{1}{x} \left(c_1 I_2(2\sqrt{x}) + c_2 K_2(2\sqrt{x})\right).
\end{equation}
Solving for the boundary conditions $\hat u'(a)=0$, $\hat u'(b)=1$ then determines the coefficients
$c_1$ and $c_2$, giving
\begin{equation}
\label{eq:conuhat}
\hat u(x) =
\frac{b}{\sqrt{x}}\cdot
\frac{K_2(2\sqrt{a})I_1(2\sqrt{x}) + I_2(2\sqrt{a})K_1(2\sqrt{x})}
{K_2(2\sqrt{a})I_2(2\sqrt{b})-I_2(2\sqrt{a})K_2(2\sqrt{b})}.
\end{equation}
Separable transient solutions $u(x,t)-\hat u(x)$ will be of the form $e^{-\lambda t}\psi(x)$,
where $\psi(x)$ satisfies
\begin{gather}
\label{eq:conpsi1}
x\psi''(x) + 2\psi'(x) + (\lambda-1)\psi(x) = 0\\
\label{eq:conpsi2}
\psi'(a) = \psi'(b) = 0.
\end{gather}
Multiplying \eqref{eq:conpsi1} by $x$ gives
\begin{equation}
\label{eq:conpsils}
x^2\psi''(x) + 2x\psi'(x) + (\lambda-1)x \psi(x) =
\frac{d}{dx}(x^2\psi'(x)) + (\lambda-1)x \psi(x) = 0,
\end{equation}
which together with \eqref{eq:conpsi2} forms a regular Sturm--Liouville problem with
non-negative eigenvalues $\lambda_k-1$ and corresponding orthogonal eigenfunctions
$\psi_k(x)$ with respect to the weight function $\rho(x) = x$.
For $\lambda_0=1$, the eigenfunction is $\psi_0(x)=1$. For $\lambda_k>0$,
equation \eqref{eq:conpsils} is of the form \eqref{eq:besg}, with $\alpha=2\sqrt{\lambda_k-1}$.
Writing $\omega_k$ for $\sqrt{\lambda_k-1}$, we have
\begin{equation}
\psi_k(x) = \frac{1}{\sqrt{x}} \left(c_1^{(k)} J_1(2\omega_k \sqrt{x})) + c_2^{(k)} Y_1(2\omega_k \sqrt{x})\right),
\end{equation}
with derivative
\begin{equation}
\psi_k'(x) = - \frac{\omega_k}{x} \left(c_1^{(k)} J_2(2\omega_k\sqrt{x})) + c_2^{(k)} Y_2(2\omega_k\sqrt{x})\right).
\end{equation}
The boundary conditions $\psi_k'(a) = \psi_k'(b) = 0$ imply
\begin{gather}
f_2\left(\sqrt{\tfrac{b}{a}}, 2\omega_k\sqrt{a}\right) = 0,
\intertext{where $f_\nu$ is the cross-product Bessel function}
f_\nu(q, x) = J_\nu(qx)Y_\nu(x)-J_\nu(x)Y_\nu(qx).
\end{gather}
The eigenvalues for $k>0$ are then $\lambda_k=1+\omega_k^2$ with
\begin{equation}
\label{eq:conomegak}
\omega_k = \frac{\chi_{2, k}\left(\sqrt{\scriptstyle \frac{b}{a}}\right)}{2\sqrt{a}}.
\end{equation}
where $\chi_{\nu, k}(q)$ is the $k$th positive root of $f_\nu(q, x)=0$. These solutions
can be computed efficiently via a Newton--Raphson scheme \autocite{sorolla2013}.
$c_1^{(k)}$ and $c_2^{(k)}$ are then determined up to scale; for example, we can
set
\begin{equation}
c_1^{(k)} = J_2(2\omega_k\sqrt{x})^{-1},\qquad
c_2^{(k)} = -Y_2(2\omega_k\sqrt{x})^{-1},
\end{equation}
giving
\begin{equation}
\label{eq:conpsik}
\psi_k(x) =\frac{1}{\sqrt{x}}\left(
\frac{J_1(2\omega_k\sqrt{x})}{J_2(2\omega_k\sqrt{a})}
-
\frac{Y_1(2\omega_k\sqrt{x})}{Y_2(2\omega_k\sqrt{a})}
\right).
\end{equation}
The complete solution then will be
\begin{equation}
\label{eq:conuxt}
u(x,t) = \hat u(x) - \sum_{k=0}^{\infty} a_k e^{-\lambda t} \psi_k(x),
\end{equation}
where the $a_k$ will be determined by the initial conditions.
As the $\psi_k$ are
eigenfunctions of the Sturm-Liouville problem (\ref{eq:conpsils}, \ref{eq:conpsi2}), they
are orthogonal with respect to the inner product with weight function $\rho(x)=x$,
\begin{equation}
\langle f, g \rangle = \Int{a}{b} xf(x)g(x) \D x.
\end{equation}
Taking the inner product of $\langle u(x,0), \psi_k(x)\rangle$ then gives for each $k$,
\begin{equation}
a_k = \frac{\Int{a}{b} x \hat u(x)\psi_k(x) \D x}{\Int{a}{b} x \psi_k(x)^2 \D x}.
\end{equation}
For $k=0$,
\begin{equation}
\begin{aligned}
a_0 &= \frac{1}{b-a} \cdot \Int{a}{b} x \hat u(x) \D x\\
&= \frac{1}{b-a} \cdot \left. x^2\hat u'(x)\right|_a^b\\
&= \frac{b^2}{b-a}.
\end{aligned}
\end{equation}
(See Appendix \ref{ap:conid} for the derivation of this and the following integrals.)
For $k>0$,
\begin{equation}
\begin{aligned}
\Int{a}{b} x \hat u(x)\psi_k(x) \D x
&= \frac{1}{1+\omega_k^2} \cdot \left. (x^2\hat u'(x)\psi_k(x)-x^2\hat u(x)\psi'_k(x))\right|_a^b\\
&= \lambda_k^{-1} b^2\psi_k(b),
\end{aligned}
\end{equation}
and
\begin{equation}
\begin{aligned}
\Int{a}{b} x \psi_k(x)^2 \D x
&= \left.
x^2\psi_k(x)^2 + \frac{x^2}{\omega_k^2}\psi_k(x)\psi'_k(x)
+ \frac{x^3}{\omega_k^2}\psi'_k(x)^2
\right|_a^b\\
&= b^2\psi_k(b)^2 - a^2\psi_k(a)^2,
\end{aligned}
\end{equation}
giving
\begin{equation}
a_k = \frac{1}{\lambda_k}\cdot \frac{b^2\psi_k(b)}{b^2\psi_k(b)^2-a^2\psi_k(a)^2}.
\end{equation}
This gives the time-dependent solution
\begin{equation}
u(x,t) = \hat u(x) - \frac{b^2}{b-a}e^{-t} -
\sum_{k=1}^{\infty} \lambda_k^{-1} e^{-\lambda_k t}
\frac{b^2\psi_k(b)\psi_k(x)}{b^2\psi_k(b)^2-a^2\psi_k(a)^2}
\end{equation}
where $\hat u$ is given by \eqref{eq:conuhat}, $\psi_k$ is given by \eqref{eq:conpsik},
and $\lambda_k = 1 + \omega_k^2$ is given by \eqref{eq:conomegak}.
\section{Approximating the gradient}
In a finite volume discretization there
will be a computation of the approximation to the gradient
$v'(x)$ as a linear combination of two (or potentially more)
values of the discrete approximation of the voltage for points
near $x$.
If the coefficients in this approximation are constant in
time, they cannot account for source terms or values of the
voltage outside the points in question. The most faithful
such approximation should then reproduce the exact gradient $v'(x)$
in the source-free steady state form of the cable equation,
\begin{equation}
(\sigma v')' = 0.
\end{equation}
The voltage $v$ is then determined by its values at
any two distinct points $a$ and $b$,
\begin{equation}
\frac{v(x) - v(a)}{v(b) - v(a)} =
\frac{\displaystyle \Int{a}{x} \sigma(z)^{-1} \D z}
{\displaystyle \Int{a}{b} \sigma(z)^{-1} \D z},
\end{equation}
and correspondingly, the gradient is
\begin{equation}
\sigma(x) v'(x) =
\frac{v(b) - v(a)}
{\displaystyle\Int{a}{b} \sigma(z)^{-1} \D z}.
\end{equation}
If $x$ is a point of discontinuity in $\sigma$,
the flux $\sigma(x)v'(x)$ is nonetheless well defined.
For a finite volume approximation, however, the available
estimates may correspond instead to surface area-weighted means
over control volumes. Consider two adjacent control volumes
on $[a, m]$ and $[m, b]$, with mean voltages $\bar v_a$ and
$\bar v_b$ given in terms of a weight function $w(x)$:
\begin{align}
\bar v_a &= w_a^{-1} \Int{a}{m} w(x)v(x) \D x,\\
\bar v_b &= w_b^{-1} \Int{m}{b} w(x)v(x) \D x,
\end{align}
with normalizing constants $w_a$ and $w_b$. With $\sigma v' = \kappa$
constant,
\begin{equation}
\begin{aligned}
\bar v_a
&= w_a^{-1} \Int{a}{m} w(x) \left( v(m) + \kappa \Int{m}{x} \sigma(y)^{-1} \D y \right) \D x \\
&= v(m) + \kappa \cdot w_a^{-1} \Int{a}{m} w(x) \Int{m}{x} \sigma(y)^{-1} \D y \D x,
\end{aligned}
\end{equation}
and similarly,
\begin{equation}
\begin{aligned}
\bar v_b
&= v(m) + \kappa \cdot w_b^{-1} \Int{m}{b} w(x) \Int{m}{x} \sigma(y)^{-1} \D y \D x,
\end{aligned}
\end{equation}
Taking the difference then gives a solution for $\kappa$,
\begin{equation}
\kappa = (\bar v_b - \bar v_a) \cdot \left[
w_b^{-1}\!\Int{m}{b} w(x)\! \Int{m}{x} \sigma(y)^{-1} \D y \D x\,-\,
w_a^{-1}\!\Int{a}{m} w(x)\! \Int{m}{x} \sigma(y)^{-1} \D y \D x
\right]^{\mathrlap{-1}}.
\end{equation}
\newpage
\appendix
\section{The Rallpack 1 model}
\label{ap:rallpack}
The Rallpack suite \autocite{bhalla1992} is a set of three models for the
validation and benchmarking of cable-based neuron simulators. The first of
these comprises a cylindrical passive cable of length $L$ and diameter $d$,
with a constant current applied at $x=0$. The membrane resistive current
density is given by $J = R_M^{-1}(v-E)$, where $E$ is a fixed reversal potential.
The values of the electrial and geometric parameters are given in
Table~\ref{tbl:rallpack1}.
The membrane potential can then be expressed as
\begin{equation}
v(x, t) = E - \lambda I \cdot u(\frac{b-x}{\lambda}, \frac{t}{\tau}),
\end{equation}
where
\begin{equation}
\lambda = \sqrt{\frac{R_M d}{4 R_L}},\quad
\tau = R_M C_M,\quad
b = L/\lambda,
\end{equation}
and $u(x,t)$ is given by \eqref{eq:cylseries}.
\begin{table}[htb]
\centering
\begin{tabular}{lll}
\toprule
Parameter & {} & {Value} \\
\midrule
Cable diameter & $d$ & \SI{1.0}{\um} \\
Cable length & $L$ & \SI{1.0}{\mm} \\
Bulk (axial) resistivity & $R_L$ & \SI{1.0}{\ohm\m} \\
Membrane resistivity & $R_M$ & \SI{4.0}{\ohm\m\squared} \\
Membrane specific capacitance & $C_M$ & \SI{0.01}{\F\per\m\squared} \\
Membrane reversal potential & $E_M$ & \SI{-65.0}{\mV} \\
Injected current & $I$ & \SI{0.1}{\nA} \\
\bottomrule
\end{tabular}
\caption{Rallpack 1 parameters}
\label{tbl:rallpack1}
\end{table}
\section{Series computation for the voltage on the uniform cylinder}
\label{ap:cylcomp}
How many terms in the series \eqref{eq:cylseries} need to be computed for a given tolerance?
We obtain bounds on the remainders in the series as follows.
Let $u_n(x,t)$ be the partial sum up to $k=n-1$ in \eqref{eq:cylseries}, and $r_n(x,t) = u(x,t) - u_n(x,t)$
be the remainder,
\begin{equation}
r_n(x,t) = -\frac{2}{b}\sum_{k=n}^{\infty} (-1)^k\lambda_k^{-1}e^{-\lambda_k t}\cos\frac{k\pi x}{b}.
\end{equation}
Then $|r_n(x,t)|\leq R_n(t)$ for all $x$, with
\begin{equation}
R_n(t) = \frac{2}{b}\sum_{k=n}^{\infty} \lambda_k^{-1}e^{-\lambda_k t}\\
= \frac{2t}{b}\sum_{k=n}^{\infty} l(k)^{-1}e^{-l(k)}\\
\end{equation}
where
\[
l(z) = \left(1+\left(\frac{z\pi}{b}\right)^2\right)\cdot t.
\]
The summand is monotonically decreasing in $k$, so
\begin{equation}
\label{eq:rnigamma}
R_n(t)
\leq \frac{2t}{b}\Int{n}{\infty} l(k)^{-1}e^{-l(k)}\D k
= \frac{\sqrt{t}}{b} \Int{\lambda_n t}{\infty} e^{-z}z^{-\frac{3}{2}} \D z.
\end{equation}
For $a>0$, $s>0$, integrating by parts gives
$\displaystyle \Int{a}{\infty} e^{-z}z^{-s}\D z < e^{-a}a^{-s}$,
and so
\begin{equation}
R_n(t) < \frac{1}{b t}\lambda_n^{-3/2}e^{-\lambda_n t}.
\end{equation}
\section{Identities and integrals for tapered cable eigenfunctions}
\label{ap:conid}
\newcommand{\Fp}{\smash{F^{\mathrlap{\prime}}}\mkern-2.0mu}
\newcommand{\Gp}{\smash{G^{\mathrlap{\prime}}}\mkern-2.0mu}
Let
\begin{equation}
\begin{aligned}
F_k(z) &= z^{-\frac{k}{2}}\cZ_k(2z^{1/2}),&
G_k(z) &= z^{-\frac{k}{2}}\cC_k(2\omega z^{1/2}),
\end{aligned}
\end{equation}
where $C_k$ and $Z_k$ are solutions to the Bessel and modified Bessel equations
respectively,
\begin{equation}
\begin{aligned}
\cZ_k(z) &= c_1 I_k(z) + c_2 e^{i\pi k} K_k(z),&
\cC_k(z) &= c_3 J_k(z) + c_4 Y_k(z)
\end{aligned}
\end{equation}
for some constants $c_1$, $c_2$, $c_3$, $c_4$.
$F_k$ and $G_k$ are solutions of the differential equations
\begin{gather}
z f''(z) + (k+1) f'(z) - z = 0\\
\intertext{and}
z g''(z) + (k+1) g'(z) + \omega^2 z = 0
\end{gather}
respectively, following the identity (2) of \autocite[p.~512]{lommel1879}.
Applying the derivative and recurrence relations for Bessel functions
\autocite[\S 10.6, \S10.29]{nistdlmf} then gives the following identities,
\begin{align}
\label{eq:fgrel}
\Fp_k(z) &= F_{k+1}(z), & z \Fp_k(z) &= -k F_k(z) + F_{k-1}(z),\\
\Gp_k(z) &= -\omega G_{k+1}(z), & z \Gp_k(z) &= -k G_k(z) + \omega G_{k-1}(z).
\end{align}
When $k$ is an integer, these imply
\begin{equation}
\begin{aligned}
F_{-k}(z) &= z^k F_k(z),\\
G_{-k}(z) &= (-z)^k G_k(z),
\end{aligned}
\qquad \text{for $k\in\mathbb{Z}$}.
\end{equation}
In the following, derivatives will be respect to $z$, and the argument $z$ to
$F_k$ and $G_k$ will be omitted where it is unambiguous.
\subsection*{The integral $\Int{}{} z F_1 G_1 \D z$}
The relations \eqref{eq:fgrel} give the identities
\begin{equation}
\begin{aligned}
\label{eq:fgrel2}
(z^kF_k)' &= z^{k-1}F_{k-1}\\
(z^kG_k)' &= \omega z^{k-1}G_{k-1}.
\end{aligned}
\end{equation}
Consequently
\begin{equation}
\begin{aligned}
(z^2 F_2 G_1)' &= z F_1 G_1 + z^2 F_2 \Gp_1 = z F_1 G_1 - \omega z^2 F_2 G_2 \\
(z^2 F_1 G_2)' &= z F_1 G_1 + z^2 \Fp_1 G_2 = z F_1 G_1 + z^2 F_2 G_2.
\end{aligned}
\end{equation}
Cancelling the $F_2G_2$ term gives
\begin{equation}
(z^2 F_2 G_1 + \omega z^2 F_1 G_2)' =
(1+\omega^2) z F_1 G_1,
\end{equation}
and so
\begin{equation}
(1+\omega^2) \Int{}{} z F_1 G_1 dz = z^2 F_2 G_1 + \omega z^2 F_1 G_2 = z^2 \Fp_1 G_1 - z^2 F_1 \Gp_1.
\end{equation}
\subsection*{The integral $\Int{}{} z F_1 \D z$}
As observed in \eqref{eq:fgrel2}, $(z^2 F_2)' = z F_1$, and so
\begin{equation}
\Int{}{} z F_1 dz = z^2 F_2 = z^2 \Fp_1.
\end{equation}
\subsection*{The integral $\Int{}{} z G_1^2 \D z$}
Following the technique of \autocite[p.533]{lommel1879},
\begin{equation}
\begin{aligned}
(z^a G_k G_{m+1})'
&= a z^{a-1} G_k G_{m+1} + z^a(\Gp_k G_{m+1} + G_k \Gp_{m+1})\\
&= a z^{a-1} G_k G_{m+1} - \omega z^a G_{k+1}G_{m+1} + z^{a-1} G_k(\omega G_m - (m+1) G_{m+1})\\
&= (a-m-1) z^{a-1} G_k G_{m+1} + \omega z^{a-1} (zG_{k+1}G_{m+1} - G_k G_m).
\end{aligned}
\end{equation}
The last term is symmetric in $k$ and $m$, so
\begin{equation}
(z^a G_k G_{m+1} - z^a G_m G_{k+1})' =
(a-m-1) z^{a-1} G_k G_{m+1} - (a-k-1) z^{a-1} G_m G_{k+1}.
\end{equation}
Letting $a=k+1$ then gives,
\begin{equation}
(z^{k+1} G_k G_{m+1} - z^{k+1} G_{k+1} G_m)' = (k-m) z^k G_k G_{m+1},
\end{equation}
and in particular,
\begin{equation}
\label{eq:intzg1sq}
\Int{}{} z G_1^2 \D z = z^2 G_1^2 - z^2 G_0 G_2.
\end{equation}
The result \eqref{eq:intzg1sq} can be expressed in terms of just $G_1$ and $\Gp_1$ by
application of the recurrence relationships:
\begin{equation}
\label{eq:intzg1sqbis}
\Int{}{} z G_1^2 \D z = z^2 G_1^2 + \frac{z^2}{\omega^2} G_1 \Gp_1 + \frac{z^3}{\omega^2} G^{\prime 2}_1.
\end{equation}
\printbibliography
\end{document}
\documentclass[parskip=half]{scrartcl}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[citestyle=authoryear-icomp,bibstyle=authoryear]{biblatex}
\usepackage{booktabs}
\usepackage[style=british]{csquotes}
\usepackage{fontspec}
\usepackage{siunitx}
\setmainfont[Numbers=Lowercase]{TeX Gyre Pagella}
\newfontfamily\dispfamily{TeX Gyre Pagella}
\addtokomafont{disposition}{\dispfamily}
\MakeAutoQuote{«}{»}
\DeclareMathOperator{\Res}{Res}
\addbibresource{cable.bib}
\title{Analytic solution to passive cable model}
\author{Sam Yates}
\date{October 20, 2016}
\begin{document}
\maketitle
\section{Background}
The Rallpack suite \parencite{bhalla1992} is a set of three tests for cable-based neuronal
simulators, for validation and benchmarking. Validation data is provided with the
distribution of the suite, which at the time of writing can now be found within the
\textsc{Genesis} simulator simulator distribution.\footnote{see \url{http://genesis-sim.org}.}
The first two of the tests are based on passive cable models which admit analytic
solutions, and the Rallpack suite includes code that can generate the reference curves
for these models. The reference code, however, requires hand-tuning of the iterations;
the authors state in the internal documentation that
«the use of 10 terms gives at least six figure accuracy», but this is for the
fixed time increments used in their dataset and is not validated within the code
or by the supplied material.
For flexibility of testing and cross-checking of the Rallpack reference data,
it would be useful to have at hand a robust calculator of the passive cable
potential solution.
\section{The Rallpack 1 model}
The model comprises a cylindrical cable segment with the physical and electrical
properties as described in Table~\ref{tbl:rallpack1}. A current of \SI{0.1}{\nA}
is injected at the left end of the cable from $t=0$, and the initial potential
is the reversal potential.
\begin{table}[ht]
\centering
\begin{tabular}{lSl}
\toprule
Term & {Value} & Property\\
\midrule
$d$ & \SI{1.0}{\um} & cable diameter \\
$L$ & \SI{1.0}{\mm} & cable length \\
$R_A$ & \SI{1.0}{\ohm\m} & bulk axial resistivity \\
$R_M$ & \SI{4.0}{\ohm\m\squared} & areal membrane resistivity \\
$C_M$ & \SI{0.01}{\F\per\m\squared} & areal membrane capacitance \\
$E_M$ & \SI{-65.0}{\mV} & membrane reversal potential \\
\bottomrule
\end{tabular}
\caption{Cable properties for the Rallpack 1 model.}
\label{tbl:rallpack1}
\end{table}
The potential on a constant-radius passive cable is governed by the PDE
\begin{equation}
\lambda^2 \frac{\partial^2 v}{\partial x^2} =
\tau\frac{\partial v}{\partial t} + v - E,
\end{equation}
where $E$ is the membrane reversal potential, and $\lambda$ and $\tau$ are the
electrotonic length and time constants for the cable. It is convenient
to consider the electrical properties of the cable per unit-length, in terms
of the linear axial resistivity $r$, the linear membrane capacitance $r$,
and the linear membrane capacitance $c$. These determine $\lambda$ and $\tau$ by
\begin{gather*}
\lambda = \frac{1}{r\cdot g},\\
\tau = r\cdot c.
\end{gather*}
With the model boundary conditions,
\begin{subequations}
\begin{align}
v(x, 0) &= E, \\
\left.\frac{\partial v}{\partial x}\right\vert_{x=0} & = -Ir, \\
\left.\frac{\partial v}{\partial x}\right\vert_{x=L} & = 0,
\end{align}
\end{subequations}
where $I$ is the injected current and $L$ is the cable length.
The solution $v(x, t)$ can be expressed in terms of the solution $g(x, t; L)$
to a normalized version of the cable equation,
\begin{subequations}
\begin{align}
\label{eq:normcable}
\frac{\partial^2 g}{\partial x^2} & =
\frac{\partial g}{\partial t} + g,
\\
\label{eq:normcableinitial}
g(x, 0) &= 0,
\\
\label{eq:normcableleft}
\left.\frac{\partial g}{\partial x}\right\vert_{x=0} & = 1,
\\
\label{eq:normcableright}
\left.\frac{\partial g}{\partial x}\right\vert_{x=L} & = 0
\end{align}
\end{subequations}
by
\begin{equation}
v(x, t)= E - Ir\lambda \cdot g(\frac{x}{\lambda}, \frac{t}{\tau}; \frac{L}{\lambda}).
\end{equation}
\section{Solution to the normalized cable equation}
Let $G(x, s)$ be the Laplace transform of $g(x, t)$ with respect to $t$.
If the inverse transform of $G$ exists, it must agree with $g$ almost everywhere
for $t>0$, or for all $t>0$ given the continuity of $g$.
From
\eqref{eq:normcable} and \eqref{eq:normcableinitial},
\begin{equation}
\label{eq:lap}
\frac{\partial^2 G}{\partial x^2} = sG + G.
\end{equation}
The boundary conditions \eqref{eq:normcableleft} and \eqref{eq:normcableright} give
\begin{align}
\label{eq:lapleft}
\frac{\partial G}{\partial x}(0, s) & = \frac{1}{s}
\\
\label{eq:lapright}
\frac{\partial G}{\partial x}(L, s) & = 0.
\end{align}
Solutions to \eqref{eq:lap} must be of the form
\begin{equation}
G(x, s) = A(s) e^{mx} +B(s) e^{-mx}
\end{equation}
where $m=\sqrt{1+s}$. From \eqref{eq:lapleft} and \eqref{eq:lapright},
\begin{align*}
mA(s) - mB(s) & = \frac{1}{s}
\\
mA(s)e^{mL} -mB(s)e^{-mL} & = 0
\end{align*}
and thus
\begin{align*}
A(s) & = \frac{1}{sm (1-e^{2mL})}
\\
B(s) & = \frac{e^{2mL}}{sm (1-e^{2mL})}.
\end{align*}
Consequently,
\begin{equation}
\begin{aligned}
G(x, s) &= \frac{1}{ms}\cdot\frac{e^{mx}+e^{2mL-mx}}{1-e^{2mL}}\\
&= - \frac{1}{ms}\cdot\frac{\cosh m(L-x)}{\sinh mL}.
\end{aligned}
\end{equation}
\subsection*{Inversion}
Sufficient conditions for the inverse transform of $G(x,s)$ to exist
and be representable in series form are as follows
\parencite[][Theorem 4]{churchill1937}:
\begin{enumerate}
\item
$G(x, s)$ is analytic in some right half-plane $H$,
\item
the singularities of $G(x, s)$ are all poles, and
\item for some $k>1$, $|s^k G(x, s)|$ is bounded in $H$ and
on the circles $|s|=\rho_i$, where $\rho_i$ is an unbounded monotonically
increasing sequence.
\end{enumerate}
If in addition all the poles $\sigma_j$ of $G$ are simple, then
the series expansion of the inverse transform is given by
\begin{equation}
g(x,t) = \sum_j e^{\sigma_j t}\, \Res(G;\sigma_j),\quad t>0.
\end{equation}
$G(x,s)$ has poles when $s=0$, $m=0$, or $\sinh mL=0$.
In the following, let
\begin{gather*}
a_k = k\pi /L\\
m_k = a_k i\\
s_k = m_k^2 -1 = -k^2\pi^2/L^2-1.
\end{gather*}
for $k\in\mathbb{Z}$.
The poles are then $0$, $-1$, and $s_k$ for $k\geq 1$.
There are no branch points
arising from $m=\sqrt{1+s}$, as letting $m=-\sqrt{1+s}$ leaves $G$ unchanged.
For $|s+1|>\epsilon$,
\begin{equation}
\begin{aligned}
|s^{3/2}G(x,s)|^2
& \leq (1+\epsilon)^{-1} \left| \frac{\cosh m(L-x)}{\sinh mL} \right|^2
\\
& \leq (1+\epsilon)^{-1} (1+|\coth mL|)^2
\label{eq:gbounds}
\end{aligned}
\end{equation}
which is bounded in the half-plane $\Re(s) \geq -1+\epsilon$.
As $\coth u+iv$ is periodic in $v$, \eqref{eq:gbounds} is also bounded outside
the regions $\{s: m\in D_k\}$, where $D_k$ are non-overlapping $\delta$-neighborhoods of $m_k$
for some fixed small $\delta>0$. These are contained within disks of radius
$2k\pi\delta/L+\delta^2$ about $s_k$ for $k\geq 1$, which then are separated by
circles $|s|=\rho_k$ about the origin for some $\rho_k$ in $(|s_k|, |s_k+1|)$.
\textbf{Pole at $s=0$}.\\
Recalling $m=\sqrt{1+s}$, $m$ and $\sinh mL$ are non-zero in
a neighbourhood of $s=0$, and so the pole is simple and
\begin{equation}
\begin{aligned}
\Res(G; 0) & = - \frac{1}{m}\cdot\left.\frac{\cosh m(L-x)}{\sinh mL}\right|_{s=0}\\
& = - \frac{\cosh (L-x)}{\sinh L}.
\end{aligned}
\end{equation}
\textbf{Pole at $s=-1$}.\\
Let $G(x,s)=f(x,s)/h(s)$, where
\begin{equation}
\begin{aligned}
f(x, s) &= -\frac{1}{s}\cosh m(L-x)\\
h(s) &= m\sinh mL.
\end{aligned}
\label{eq:hf}
\end{equation}
Noting that $dm/ds = \frac{1}{2}m^{-1}$,
\begin{equation}
\begin{aligned}
h'(s) &= \frac{1}{2}m^{-1}\sinh mL + \frac{1}{2}L\cosh mL \\
&= \frac{1}{2}L + \frac{1}{2}L + O(m^2) \quad(m\to 0) \\
&= L + O(s+1) \quad(s\to -1).
\label{eq:hprime}
\end{aligned}
\end{equation}
The pole is therefore simple, and
\begin{equation}
\Res(G; -1) = f(x, -1)/h'(-1) = -\frac{1}{L}.
\end{equation}
\textbf{Pole at $s=s_k$, $k \geq 1$}.\\
Taking $h$ and $f$ as above \eqref{eq:hf},
$m_k$ is non-zero for $k\geq 1$ and
\[
h'(s_k) = \frac{1}{2}L\cosh m_kL.
\]
Consequently the pole is simple and
\begin{equation}
\begin{aligned}
\Res(G; s_k)
& = f(x, s_k)/h'(s_k)\\
& = -\frac{2}{s_k L}\frac{\cosh m_k(L-x)}{\cosh m_kL} \\
& = -\frac{2}{s_k L}\frac{\cosh m_kL\cosh m_kx-\sinh m_kL\sinh m_kL}{\cosh m_kL} \\
& = -\frac{2}{s_k L}\cosh m_k x,
\end{aligned}
\end{equation}
as $\sinh m_k=0$.
In terms of $a_k$,
\begin{equation}
\Res(G; s_k) = \frac{2}{L}\cdot\frac{1}{1+a_k^2}\cdot\cos a_kx.
\end{equation}
The series exapnsion for $g(x, t)$ therefore is
\begin{equation}
g(x, t) = -\frac{\cosh(L-x)}{\sinh L} + \frac{1}{L}e^{-t}\left\{
1+2\sum_{k=1}^\infty \frac{e^{-ta_k^2}}{1+a_k^2}\cos a_k x\right\}.
\label{eq:theg}
\end{equation}
\section{Computation of series}
As $t$ approaches zero, the series \eqref{eq:theg} converges increasingly slowly.
For computational purposes, an estimate on the series residual allows the determination
of stopping criteria for a given tolerance.
Let $g_n$ be the partial sum
\begin{equation}
g_n(x, t) = -\frac{\cosh(L-x)}{\sinh L} + \frac{1}{L}e^{-t}\left\{
1+2\sum_{k=1}^n \frac{e^{-ta_k^2}}{1+a_k^2}\cos a_k x\right\}.
\end{equation}
so that $g(x, t) =\lim_{n\to\infty} g_n(x,t)$. Let $\bar{g}_n = |g-g_n|$ be the
residual. The $a_k$ form an increasing sequence, so
\begin{equation}
\begin{aligned}
\bar{g}_n(x,t)
& \leq \frac{2}{L}e^{-t}\sum_{n+1}^\infty\frac{e^{-ta_k^2}}{1+a_k^2}\\
& \leq \frac{2}{L}e^{-t}\int_{a_n}^\infty \frac{e^{-tu^2}}{1+u^2}\,du\\
& < \frac{2}{L}e^{-t}\int_{a_n}^\infty \frac{e^{-tu^2}}{u^2}\,du.
\end{aligned}
\label{eq:gbar}
\end{equation}
Substituting $u=\sqrt{v/t}$ gives the identity
\begin{equation}
\int_{a}^\infty \frac{e^{-tu^2}}{u^2}\,du
= \frac{1}{2}\sqrt{t}\int_{a^2t}^\infty e^{-tv} v^{\frac{-3}{2}}\,dv
= \frac{1}{2}\sqrt{t}\,\Gamma(-\frac{1}{2},a^2 t),
\end{equation}
where $\Gamma(\alpha, z)$ is the upper incomplete gamma function.
For real $\alpha<1$ and $z>0$, \textcite[][Theorem 2.3]{borwein2009} give the upper bound
\[
\Gamma(\alpha, z) \leq z^{\alpha-1} e^{-z}.
\]
Substituting into \eqref{eq:gbar} gives
\begin{equation}
\begin{aligned}
\bar{g}_n(x,t)
& < \frac{1}{L}e^{-t}\sqrt{t}\,\Gamma(-\frac{1}{2},a_n^2 t) \\
& \leq \frac{1}{L}e^{-t}\sqrt{t}\,(a_n^2 t)^{-\frac{3}{2}}e^{-a_n^2t} \\
& = \frac{e^{-t(1+a_n^2)}}{L t a_n^3}.
\end{aligned}
\end{equation}
\printbibliography
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment