diff --git a/.gitignore b/.gitignore index 6a4773ce5a55f94771191c290d93b77fef254772..4d413c4207da7f7db8a66baa00541cab4fc97c24 100644 --- a/.gitignore +++ b/.gitignore @@ -44,12 +44,10 @@ *.fls *.bbl - # cmake CMakeFiles CMakeCache.txt cmake_install.cmake -Makefile # mechanisms generated from .mod files mechanisms/multicore/*.hpp diff --git a/doc/math/cable_equation/Makefile b/doc/math/cable_equation/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..3f947508313ef6887b3392ea5ce07d425f785ac0 --- /dev/null +++ b/doc/math/cable_equation/Makefile @@ -0,0 +1,14 @@ +SOURCES := cable_equation.tex + +LATEXMK := latexmk -e '$$clean_ext=q/bbl xdv thm run.xml/' -xelatex -use-make -halt-on-error + +all: cable_equation.pdf + +cable_equation.pdf: cable_equation.tex # cable.bib + $(LATEXMK) $< + +clean: + for s in $(SOURCES); do $(LATEXMK) -c "$$s"; done + +realclean: + for s in $(SOURCES); do $(LATEXMK) -C "$$s"; done diff --git a/doc/math/cable_equation/cable.bib b/doc/math/cable_equation/cable.bib new file mode 100644 index 0000000000000000000000000000000000000000..fa6238847411e5be408e4f3af9935cd68eadd63c --- /dev/null +++ b/doc/math/cable_equation/cable.bib @@ -0,0 +1,70 @@ +@article{bhalla1992, + title = {Rallpacks: a set of benchmarks for neuronal simulators}, + author = {Upinder S. Bhalla and David H. Bilitch and James M. Bower}, + journal = {Trends in Neurosciences}, + volume = {15}, + number = {11}, + pages = {453--458}, + year = {1992}, + month = {11}, + doi = {10.1016/0166-2236(92)90009-W} +} + +@article{churchill1937, + title = {The inversion of the Laplace transformation by a direct expansion in series and its application to boundary-value problems}, + author = {R. V. Churchill}, + journal = {Mathematische Zeitschrift}, + volume = {42}, + number = {1}, + pages = {567--579}, + year = {1937}, + doi = {10.1007/BF01160095} +} + +@article{borwein2009, + title = {Uniform bounds for the complementary incomplete gamma function}, + author = {Jonathan M Borwein and O-Yeat Chan}, + journal = {Mathematical Inequalities and Applications}, + volume = {12}, + number = {1}, + pages = {115--121}, + year = {2009}, + doi = {10.7153/mia-12-10} +} + +@article{sorolla2013, + title = {Algorithm to calculate a large number of roots of the cross-product of {B}essel functions}, + author = {Edén Sorolla and Juan R. Mosig and Michael Mattes}, + journal = {{IEEE} Transactions on Antennas and Propagation}, + volume = {61}, + number = {4}, + month = {4}, + year = {2013}, + doi = {10.1109/TAP.2012.2231929} +} + +@misc{nistdlmf, + title = {{NIST} Digital Library of Mathematical Functions (Release 1.0.23)}, + editor = {F. W. J. Olver and A. B. {Olde Daalhuis} and D. W. Lozier and B. I. Schneider and R. F. Boisvert and C. W. Clark and B. R. Miller and B. V. Saunders}, + url = {http://dlmf.nist.gov}, + urldate = {2019-06-15} +} + +@article{lommel1879, + title = {Zur Theorie der Bessel'schen Functionen}, + author = {E. Lommel}, + journal = {Mathematische Annalen}, + volume = {14}, + issue = {4}, + year = {1879}, + pages = {510--536} +} + +@book{reid1980, + title = {{S}turmian theory for ordinary differential equations}, + author = {William Thomas Reid}, + year = {1980}, + publisher = {Springer-Verlag}, + location = {New York}, + doi = {10.1007/978-1-4612-6110-0} +} diff --git a/doc/math/cable_equation/cable_equation.tex b/doc/math/cable_equation/cable_equation.tex new file mode 100644 index 0000000000000000000000000000000000000000..0c6d34a249bdbb9ec012169292aa395602202fde --- /dev/null +++ b/doc/math/cable_equation/cable_equation.tex @@ -0,0 +1,720 @@ +\documentclass[parskip=half]{scrartcl} + +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage[citestyle=authoryear-icomp,bibstyle=authoryear]{biblatex} +\usepackage{booktabs} +\usepackage[style=british]{csquotes} +\usepackage{fontspec} +\usepackage{mathtools} +\usepackage{ntheorem} +\usepackage{siunitx} + +\usepackage{tikz} +\usetikzlibrary{angles,calc,intersections,quotes} + +\usepackage[p,osf]{cochineal} +\usepackage[cochineal,vvarbb]{newtxmath} +\usepackage[cal=boondoxupr,calscaled=1.0]{mathalfa} + +\newfontfamily\dispfamily{Cabin}[Scale=0.95] +\addtokomafont{disposition}{\dispfamily} + +\MakeAutoQuote{«}{»} +\DeclareMathOperator{\Res}{Res} + +\addbibresource{cable.bib} + +\newcommand{\Int}[2]{\int_{#1}^{#2}\!} +\newcommand{\D}{\mathop{}\!d} + +\newcommand{\cZ}{\mathcal{Z}} +\newcommand{\cC}{\mathcal{C}} + +\theoremstyle{nonumberplain} +\newtheorem{lemma*}{Lemma} +\newenvironment{proof}{\textbf{Proof.}}{\hfill$\square$} + +\title{Analytic solutions to the cable equation} + +\author{Sam Yates} +%\date{July 29, 2019} + +\sisetup{mode=text} + +\begin{document} + +% Work-around for siunitx vs newtxmath bug +\ExplSyntaxOn + \cs_undefine:N \c__siunitx_minus_tl + \tl_const:Nn \c__siunitx_minus_tl { - } +\ExplSyntaxOff + +\maketitle + +\section{The cable equation} + +The cable equation describes the evolution of the potential +on a long, thin, conducting cable in a conducting medium, separated +by a leaky dielectric. It assumes that the behaviour +can be modelled entirely as a one dimensional problem, +in terms of the linear conductivity of the cable $\sigma$, +and the conductance $g$ and capacitance $c$ per unit length of the +dielectric. The potential $v(x, t)$ then satisfies +\begin{equation} + (\sigma v')' = c \dot v + g v. +\end{equation} +where $f'$ denotes the derivative of $f$ with respect to the first +variable, and $\dot{f}$ the derivative with respect to the second. +The quantities $\sigma$, $g$, and $c$ are functions of position, +and will depend on the electrical and geometrical properties of +the system. + +For a cable of radius $r(x)$ with constant bulk resistivity +$R_L$, areal capacitance $C_M$ and areal surface resistivity +$R_M$, these parameters are given by +\begin{align} + \sigma(x) &= \pi r(x)^2 / R_L, \\ + g(x) &= 2 \pi r(x) \sqrt{1 + r'(x)^2} / R_M, \\ + c(x) &= 2 \pi r(x) \sqrt{1 + r'(x)^2} C_M. +\end{align} +Letting $\theta(x) = \arctan r'(x)$, the cable equation becomes +\begin{equation} + \label{eq:constelec} + \frac{R_M}{2 R_L}\left( + 2\sin\theta\cdot v' + r \cos\theta\cdot v'' + \right) = + R_M C_M \dot v + v. +\end{equation} + +\section{Analytic solutions for $v(x, t)$} + +Two important special cases for the cable equation are the cylinder, +with $r(x)$ constant and $\theta(x)=0$, and the conical frustum, +with $\theta(x)$ constant and $r(x)=x\tan\theta$. + +Given constant electrical properties, as in \eqref{eq:constelec}, +a zero voltage at $t=0$, and Neumann boundary conditions, what +is $v(x, t)$? The Rallpack 1 model \autocite{bhalla1992} is +an example of such a passive cable model, and is discussed in +Appendix \ref{ap:rallpack}. + +\subsection{The cylinder} + +Suppose the cable lies on the interval $[0, B]$, with initial +voltage zero, zero current +at $x=0$, and fixed injected current $I$ at $x=B$. The boundary +conditions are then $v(x,0) = 0$, $v'(0, t) = 0$, and $v'(B, t) = -E$, +where $-E = I\cdot R_L/\pi r^2$. + +A change of variables gives +\begin{equation} + v(x, t) = -\lambda E\cdot u(x/\lambda, t/\tau), +\end{equation} +where +\begin{equation} + \lambda = \sqrt{\frac{R_M r}{2 R_L}}, \quad \tau = R_M C_M, \quad b = B/\lambda, +\end{equation} +and $u$ satisfies +\begin{equation} + \begin{aligned} + u''(x, t) &= \dot u(x, t) + u(x, t),\\ + u(x, 0) &= 0,\\ + u'(0, t) &= 0,\\ + u'(b, t) &= 1. + \end{aligned} + \label{eq:ucyl} +\end{equation} + +The corresponding time-invariant problem has solution $\hat u(x)$ where +\begin{equation} + \hat u'' = \hat u,\quad \hat u'(0) = 0,\quad \hat u'(b) = 1, +\end{equation} +giving +\begin{equation} + \hat u(x) = \frac{\cosh x}{\sinh b}. +\end{equation} + +Consider separable transient solutions $u(x,t)-\hat u(x)$, with zero derivative +at $x=0$ and $x=b$, of the form $\psi(x)\eta(t)$. From \eqref{eq:ucyl}, +$\eta(t)=e^{-\lambda t}$ for some $\lambda$ and $\psi$ satisfies +\begin{gather} + \label{eq:efncyl} + \psi'' + (\lambda-1)\psi = 0,\\ + \label{eq:efncylbc} + \quad \psi'(0)=\psi'(b)=0. +\end{gather} +This is a regular Sturm-Liouville problem +\autocite[see e.g.][Theorem~2.1, p.~146]{reid1980} with discrete non-negative eigenvalues +$\lambda_k-1$ and corresponding orthogonal eigenfunctions $\psi_k$, +\begin{equation} + \langle \psi_k, \psi_{k'} \rangle = + \Int{0}{b} \psi_k(x)\psi_{k'}(x) \D x =0\quad\text{if $k\neq k'$}. +\end{equation} + +The least eigenvalue corresponds to $\lambda_0 = 1$ with eigenfunction +$\psi_0(x)=1$. + +For $\lambda>1$, \eqref{eq:efncyl} gives +$\psi(x) = c_1\cos\sqrt{\lambda-1}x + c_2\sin\sqrt{\lambda-1}x$. From $\psi'(0)=0$, +we have $c_2=0$. From $\psi'(b)=1$, it follows $c_1=0$ or $\sqrt{\lambda-1}b = k\pi$ +for some positive integer $k$. Consequently we have eigenvalues and eigenfunctions, +\begin{gather} + \label{eq:lkcyl} + \lambda_k = 1+\left(\frac{k\pi}{b}\right)^{\mathrlap{2}},\\ + \psi_k(x) = \cos \frac{k\pi x}{b}. +\end{gather} +for integers $k\geq 0$, including the constant $\lambda=1$ case. + +The time-dependent solution $u(x, t)$ then is +\begin{equation} + u(x,t) = \hat u(x) - \sum_{k=0}^{\infty} a_k e^{-\lambda_k t}\psi_k(x), +\end{equation} +with $a_k$ determined by the initial conditions, +\begin{equation} + 0 = \langle u(x,0), \psi_k(x) \rangle + = \langle \hat u(x), \psi_k(x) \rangle + - a_k\langle \psi_k(x), \psi_k(x)\rangle, +\end{equation} +with +\begin{align} + \langle \hat u(x), \psi_k(x) \rangle + = \frac{1}{\sinh b}\Int{0}{b}\cosh x\cos\frac{k\pi}{b}x \D x + = (-1)^k\lambda_k^{-1}, + \intertext{and} + \langle \psi_k(x), \psi_k(x) \rangle + = \Int{0}{b}\cos^2 \frac{k\pi}{b}x \D x + = + \begin{cases} + b & \text{if $k=0$,}\\ + \frac{b}{2} & \text{otherwise.}\\ + \end{cases} +\end{align} +Consequently, +\begin{equation} + \label{eq:cylseries} + u(x,t) = \frac{\cosh x}{\sinh b} - \frac{1}{b}e^{-t} - + \frac{2}{b}\sum_{k=1}^{\infty} (-1)^k \lambda_k^{-1} e^{-\lambda_k t} \cos\frac{k\pi x}{b}, +\end{equation} +with $\lambda_k$ given in \eqref{eq:lkcyl}. A discussion on the residuals in this series can +be found in Appendix~\ref{ap:cylcomp}. + +Note that the time derivative $\dot u(x,t)$ can be expressed in terms of Jacobi theta functions: +\begin{equation} + \begin{aligned} + \dot u(x,t) &= \frac{1}{b}e^{-t}\left(1+2\sum_{k=1}^{\infty} (-1)^ke^{-\frac{\pi^2 k^2 t}{b}}\cos\frac{k\pi x}{b}\right)\\ + &= \frac{1}{b}e^{-t}\theta_4\left(\frac{\pi x}{2 b}\middle| \frac{i\pi t}{b^2}\right). + \end{aligned} +\end{equation} + +\subsection{The tapered cable} + +Consider the cable as a conical frustum on the interval $[A, B]$ with radius +$r(x) = x \tan\theta$ and boundary conditions $v'(A, t) = 0$, $v'(B, t) = -E$, +and $v(x, 0) = 0$ (see Figure \ref{fig:tapered}). A fixed injecting current $I$ +at $x=B$ corresponds to $-E=I\cdot R_L/\pi r(B)^2$. Reparameterizing gives +\begin{equation} + v(x, t) = -\lambda E\cdot u(x/\lambda, t/\tau), +\end{equation} +where +\begin{equation} + \lambda = \frac{R_M\sin\theta}{2 R_L}, \quad \tau = R_M C_M, \quad a = A/\lambda, \quad b = B/\lambda, +\end{equation} +and $u$ satisfies +\begin{equation} + \label{eq:conu} + \begin{aligned} + x u''(x, t) + 2 u'(x, t) &= \dot u(x, t) + u(x, t),\\ + u(x, 0) &= 0,\\ + u'(a, t) &= 0,\\ + u'(b, t) &= 1. + \end{aligned} +\end{equation} + +\begin{figure}[tbh] + \begin{tikzpicture}[scale=0.8] + \coordinate (origin) at (0,0); + \coordinate (b0) at (15,0); + \coordinate (b1) at ($ (b0) + (0,1.8) $); + \coordinate (a0) at (5,0); + + \path [name path=tangent] (origin) -- (b1); + \path [name path=avert] (a0) -- +(0,2); + \path [name intersections={of=tangent and avert, by=a1}]; + + \coordinate (a-1) at ($ (a1)!2!(a0) $); + \coordinate (b-1) at ($ (b1)!2!(b0) $); + + \draw [name path=axis, dashed] (origin) -- (b0); + + \draw let \p1 = (a1), \n2 = {0.2*\y1} in + (a1) arc (90:270:\n2 and \y1); + + \draw let \p1 = (a1), \n2 = {0.2*\y1} in + [densely dotted] (a-1) arc (-90:90:\n2 and \y1); + + \draw let \p1 = (b1), \n2 = {0.2*\y1} in + (b0) ellipse (\n2 and \y1); + + \draw (a1) -- (b1) (a-1) -- (b-1); + \draw [dotted] (origin) -- (a1) (origin) -- (a-1); + + \pic [draw, "$\theta$", angle radius = 15ex, angle eccentricity=1.2] {angle = b0--origin--b1}; + + \coordinate (lright) at ($ (b1)!2!(b0) - (0,40pt) $); + \coordinate (lleft) at ($ (origin) + (lright) - (b0) $); + + \path (lleft) node (x0label) { $x=0$ }; + \path (lright) node (xblabel) { $x=B =b\lambda $ }; + \path ($ (lleft)!(a0)!(lright) $) node (xalabel) { $x=A =a\lambda$ }; + + \draw [dotted] ($ (a-1)-(0,2ex) $) -- ($ (xalabel)+(0,2ex) $); + \draw [dotted] ($ (b-1)-(0,2ex) $) -- ($ (xblabel)+(0,2ex) $); + \draw [dotted] ($ (origin)-(0,2ex) $) -- ($ (x0label)+(0,2ex) $); + \end{tikzpicture} + \caption{Tapered cable coordinates.} + \label{fig:tapered} +\end{figure} + +Proceeding similarly to the cylinder problem, the solution can be presented as a sum of +a time-invariant solution $\hat u$ and a series of transients that are solutions to +a Sturm--Liouville problem. + +The time-invariant problem is +\begin{equation} + \begin{gathered} + x\hat u''(x) + 2\hat u'(x) - \hat u(x) = 0,\\ + \hat u'(a) = 0,\quad \hat u'(b) = 1. + \end{gathered} +\end{equation} + +Multiplying by $x$ gives a differential equation of the form +\begin{equation} + \label{eq:conicmu} + x^2 g''(x) + 2x g'(x) + \mu x g(x) = 0 +\end{equation} +for some $\mu$. This has solutions in terms of Bessel functions. +If $\cC_\nu$ is a solution to the Bessel equation +\begin{equation} + z^2 f''(z) + z f'(z) - (z^2 - \nu^2) f(z) = 0, +\end{equation} +then $g(x) = x^{-\frac{1}{2}}\cC_1(\alpha x^\frac{1}{2})$ satisfies +\begin{equation} + \label{eq:besg} + x^2 g''(x) + 2x g'(x) + \frac{\alpha^2}{4} x g(x) = 0. +\end{equation} +Similarly, if $\cZ_\nu$ is a solution to the modified Bessel equation +\begin{equation} + z^2 f''(z) + z f'(z) - (z^2 + \nu^2) f(z) = 0, +\end{equation} +then $g(x) = x^{-\frac{1}{2}}\cZ_1(\alpha x^\frac{1}{2})$ satisfies +\begin{equation} + \label{eq:modbesg} + x^2 g''(x) + 2x g'(x) - \frac{\alpha^2}{4} x g(x) = 0. +\end{equation} + +The time-invariant solution $\hat u(x)$ satisfies \eqref{eq:modbesg} with $\alpha=2$, and so +can be written as +\begin{equation} + \hat u(x) = \frac{1}{\sqrt{x}} \left(c_1 I_1(2\sqrt{x}) - c_2 K_1(2\sqrt{x})\right), +\end{equation} +with derivative +\begin{equation} + \hat u'(x) = \frac{1}{x} \left(c_1 I_2(2\sqrt{x}) + c_2 K_2(2\sqrt{x})\right). +\end{equation} +Solving for the boundary conditions $\hat u'(a)=0$, $\hat u'(b)=1$ then determines the coefficients +$c_1$ and $c_2$, giving +\begin{equation} + \label{eq:conuhat} + \hat u(x) = + \frac{b}{\sqrt{x}}\cdot + \frac{K_2(2\sqrt{a})I_1(2\sqrt{x}) + I_2(2\sqrt{a})K_1(2\sqrt{x})} + {K_2(2\sqrt{a})I_2(2\sqrt{b})-I_2(2\sqrt{a})K_2(2\sqrt{b})}. +\end{equation} + +Separable transient solutions $u(x,t)-\hat u(x)$ will be of the form $e^{-\lambda t}\psi(x)$, +where $\psi(x)$ satisfies +\begin{gather} + \label{eq:conpsi1} + x\psi''(x) + 2\psi'(x) + (\lambda-1)\psi(x) = 0\\ + \label{eq:conpsi2} + \psi'(a) = \psi'(b) = 0. +\end{gather} +Multiplying \eqref{eq:conpsi1} by $x$ gives +\begin{equation} + \label{eq:conpsils} + x^2\psi''(x) + 2x\psi'(x) + (\lambda-1)x \psi(x) = + \frac{d}{dx}(x^2\psi'(x)) + (\lambda-1)x \psi(x) = 0, +\end{equation} +which together with \eqref{eq:conpsi2} forms a regular Sturm--Liouville problem with +non-negative eigenvalues $\lambda_k-1$ and corresponding orthogonal eigenfunctions +$\psi_k(x)$ with respect to the weight function $\rho(x) = x$. + +For $\lambda_0=1$, the eigenfunction is $\psi_0(x)=1$. For $\lambda_k>0$, +equation \eqref{eq:conpsils} is of the form \eqref{eq:besg}, with $\alpha=2\sqrt{\lambda_k-1}$. +Writing $\omega_k$ for $\sqrt{\lambda_k-1}$, we have +\begin{equation} + \psi_k(x) = \frac{1}{\sqrt{x}} \left(c_1^{(k)} J_1(2\omega_k \sqrt{x})) + c_2^{(k)} Y_1(2\omega_k \sqrt{x})\right), +\end{equation} +with derivative +\begin{equation} + \psi_k'(x) = - \frac{\omega_k}{x} \left(c_1^{(k)} J_2(2\omega_k\sqrt{x})) + c_2^{(k)} Y_2(2\omega_k\sqrt{x})\right). +\end{equation} + +The boundary conditions $\psi_k'(a) = \psi_k'(b) = 0$ imply +\begin{gather} + f_2\left(\sqrt{\tfrac{b}{a}}, 2\omega_k\sqrt{a}\right) = 0, + \intertext{where $f_\nu$ is the cross-product Bessel function} + f_\nu(q, x) = J_\nu(qx)Y_\nu(x)-J_\nu(x)Y_\nu(qx). +\end{gather} +The eigenvalues for $k>0$ are then $\lambda_k=1+\omega_k^2$ with +\begin{equation} + \label{eq:conomegak} + \omega_k = \frac{\chi_{2, k}\left(\sqrt{\scriptstyle \frac{b}{a}}\right)}{2\sqrt{a}}. +\end{equation} +where $\chi_{\nu, k}(q)$ is the $k$th positive root of $f_\nu(q, x)=0$. These solutions +can be computed efficiently via a Newton--Raphson scheme \autocite{sorolla2013}. +$c_1^{(k)}$ and $c_2^{(k)}$ are then determined up to scale; for example, we can +set +\begin{equation} + c_1^{(k)} = J_2(2\omega_k\sqrt{x})^{-1},\qquad + c_2^{(k)} = -Y_2(2\omega_k\sqrt{x})^{-1}, +\end{equation} +giving +\begin{equation} + \label{eq:conpsik} + \psi_k(x) =\frac{1}{\sqrt{x}}\left( + \frac{J_1(2\omega_k\sqrt{x})}{J_2(2\omega_k\sqrt{a})} + - + \frac{Y_1(2\omega_k\sqrt{x})}{Y_2(2\omega_k\sqrt{a})} + \right). +\end{equation} + +The complete solution then will be +\begin{equation} + \label{eq:conuxt} + u(x,t) = \hat u(x) - \sum_{k=0}^{\infty} a_k e^{-\lambda t} \psi_k(x), +\end{equation} +where the $a_k$ will be determined by the initial conditions. + +As the $\psi_k$ are +eigenfunctions of the Sturm-Liouville problem (\ref{eq:conpsils}, \ref{eq:conpsi2}), they +are orthogonal with respect to the inner product with weight function $\rho(x)=x$, +\begin{equation} + \langle f, g \rangle = \Int{a}{b} xf(x)g(x) \D x. +\end{equation} +Taking the inner product of $\langle u(x,0), \psi_k(x)\rangle$ then gives for each $k$, +\begin{equation} + a_k = \frac{\Int{a}{b} x \hat u(x)\psi_k(x) \D x}{\Int{a}{b} x \psi_k(x)^2 \D x}. +\end{equation} + +For $k=0$, +\begin{equation} + \begin{aligned} + a_0 &= \frac{1}{b-a} \cdot \Int{a}{b} x \hat u(x) \D x\\ + &= \frac{1}{b-a} \cdot \left. x^2\hat u'(x)\right|_a^b\\ + &= \frac{b^2}{b-a}. + \end{aligned} +\end{equation} +(See Appendix \ref{ap:conid} for the derivation of this and the following integrals.) + +For $k>0$, +\begin{equation} + \begin{aligned} + \Int{a}{b} x \hat u(x)\psi_k(x) \D x + &= \frac{1}{1+\omega_k^2} \cdot \left. (x^2\hat u'(x)\psi_k(x)-x^2\hat u(x)\psi'_k(x))\right|_a^b\\ + &= \lambda_k^{-1} b^2\psi_k(b), + \end{aligned} +\end{equation} +and +\begin{equation} + \begin{aligned} + \Int{a}{b} x \psi_k(x)^2 \D x + &= \left. + x^2\psi_k(x)^2 + \frac{x^2}{\omega_k^2}\psi_k(x)\psi'_k(x) + + \frac{x^3}{\omega_k^2}\psi'_k(x)^2 + \right|_a^b\\ + &= b^2\psi_k(b)^2 - a^2\psi_k(a)^2, + \end{aligned} +\end{equation} +giving +\begin{equation} + a_k = \frac{1}{\lambda_k}\cdot \frac{b^2\psi_k(b)}{b^2\psi_k(b)^2-a^2\psi_k(a)^2}. +\end{equation} + +This gives the time-dependent solution +\begin{equation} + u(x,t) = \hat u(x) - \frac{b^2}{b-a}e^{-t} - + \sum_{k=1}^{\infty} \lambda_k^{-1} e^{-\lambda_k t} + \frac{b^2\psi_k(b)\psi_k(x)}{b^2\psi_k(b)^2-a^2\psi_k(a)^2} +\end{equation} +where $\hat u$ is given by \eqref{eq:conuhat}, $\psi_k$ is given by \eqref{eq:conpsik}, +and $\lambda_k = 1 + \omega_k^2$ is given by \eqref{eq:conomegak}. + + +\section{Approximating the gradient} + +In a finite volume discretization there +will be a computation of the approximation to the gradient +$v'(x)$ as a linear combination of two (or potentially more) +values of the discrete approximation of the voltage for points +near $x$. + +If the coefficients in this approximation are constant in +time, they cannot account for source terms or values of the +voltage outside the points in question. The most faithful +such approximation should then reproduce the exact gradient $v'(x)$ +in the source-free steady state form of the cable equation, +\begin{equation} + (\sigma v')' = 0. +\end{equation} + +The voltage $v$ is then determined by its values at +any two distinct points $a$ and $b$, +\begin{equation} + \frac{v(x) - v(a)}{v(b) - v(a)} = + \frac{\displaystyle \Int{a}{x} \sigma(z)^{-1} \D z} + {\displaystyle \Int{a}{b} \sigma(z)^{-1} \D z}, +\end{equation} +and correspondingly, the gradient is +\begin{equation} + \sigma(x) v'(x) = + \frac{v(b) - v(a)} + {\displaystyle\Int{a}{b} \sigma(z)^{-1} \D z}. +\end{equation} +If $x$ is a point of discontinuity in $\sigma$, +the flux $\sigma(x)v'(x)$ is nonetheless well defined. + +For a finite volume approximation, however, the available +estimates may correspond instead to surface area-weighted means +over control volumes. Consider two adjacent control volumes +on $[a, m]$ and $[m, b]$, with mean voltages $\bar v_a$ and +$\bar v_b$ given in terms of a weight function $w(x)$: +\begin{align} + \bar v_a &= w_a^{-1} \Int{a}{m} w(x)v(x) \D x,\\ + \bar v_b &= w_b^{-1} \Int{m}{b} w(x)v(x) \D x, +\end{align} +with normalizing constants $w_a$ and $w_b$. With $\sigma v' = \kappa$ +constant, +\begin{equation} + \begin{aligned} + \bar v_a + &= w_a^{-1} \Int{a}{m} w(x) \left( v(m) + \kappa \Int{m}{x} \sigma(y)^{-1} \D y \right) \D x \\ + &= v(m) + \kappa \cdot w_a^{-1} \Int{a}{m} w(x) \Int{m}{x} \sigma(y)^{-1} \D y \D x, + \end{aligned} +\end{equation} +and similarly, +\begin{equation} + \begin{aligned} + \bar v_b + &= v(m) + \kappa \cdot w_b^{-1} \Int{m}{b} w(x) \Int{m}{x} \sigma(y)^{-1} \D y \D x, + \end{aligned} +\end{equation} +Taking the difference then gives a solution for $\kappa$, +\begin{equation} + \kappa = (\bar v_b - \bar v_a) \cdot \left[ + w_b^{-1}\!\Int{m}{b} w(x)\! \Int{m}{x} \sigma(y)^{-1} \D y \D x\,-\, + w_a^{-1}\!\Int{a}{m} w(x)\! \Int{m}{x} \sigma(y)^{-1} \D y \D x + \right]^{\mathrlap{-1}}. +\end{equation} + +\newpage +\appendix +\section{The Rallpack 1 model} +\label{ap:rallpack} + +The Rallpack suite \autocite{bhalla1992} is a set of three models for the +validation and benchmarking of cable-based neuron simulators. The first of +these comprises a cylindrical passive cable of length $L$ and diameter $d$, +with a constant current applied at $x=0$. The membrane resistive current +density is given by $J = R_M^{-1}(v-E)$, where $E$ is a fixed reversal potential. +The values of the electrial and geometric parameters are given in +Table~\ref{tbl:rallpack1}. + +The membrane potential can then be expressed as +\begin{equation} + v(x, t) = E - \lambda I \cdot u(\frac{b-x}{\lambda}, \frac{t}{\tau}), +\end{equation} +where +\begin{equation} + \lambda = \sqrt{\frac{R_M d}{4 R_L}},\quad + \tau = R_M C_M,\quad + b = L/\lambda, +\end{equation} +and $u(x,t)$ is given by \eqref{eq:cylseries}. + +\begin{table}[htb] + \centering + \begin{tabular}{lll} + \toprule + Parameter & {} & {Value} \\ + \midrule + Cable diameter & $d$ & \SI{1.0}{\um} \\ + Cable length & $L$ & \SI{1.0}{\mm} \\ + Bulk (axial) resistivity & $R_L$ & \SI{1.0}{\ohm\m} \\ + Membrane resistivity & $R_M$ & \SI{4.0}{\ohm\m\squared} \\ + Membrane specific capacitance & $C_M$ & \SI{0.01}{\F\per\m\squared} \\ + Membrane reversal potential & $E_M$ & \SI{-65.0}{\mV} \\ + Injected current & $I$ & \SI{0.1}{\nA} \\ + \bottomrule + \end{tabular} + \caption{Rallpack 1 parameters} + \label{tbl:rallpack1} +\end{table} + + +\section{Series computation for the voltage on the uniform cylinder} +\label{ap:cylcomp} + +How many terms in the series \eqref{eq:cylseries} need to be computed for a given tolerance? +We obtain bounds on the remainders in the series as follows. + +Let $u_n(x,t)$ be the partial sum up to $k=n-1$ in \eqref{eq:cylseries}, and $r_n(x,t) = u(x,t) - u_n(x,t)$ +be the remainder, +\begin{equation} + r_n(x,t) = -\frac{2}{b}\sum_{k=n}^{\infty} (-1)^k\lambda_k^{-1}e^{-\lambda_k t}\cos\frac{k\pi x}{b}. +\end{equation} +Then $|r_n(x,t)|\leq R_n(t)$ for all $x$, with +\begin{equation} + R_n(t) = \frac{2}{b}\sum_{k=n}^{\infty} \lambda_k^{-1}e^{-\lambda_k t}\\ + = \frac{2t}{b}\sum_{k=n}^{\infty} l(k)^{-1}e^{-l(k)}\\ +\end{equation} +where +\[ + l(z) = \left(1+\left(\frac{z\pi}{b}\right)^2\right)\cdot t. +\] +The summand is monotonically decreasing in $k$, so +\begin{equation} + \label{eq:rnigamma} + R_n(t) + \leq \frac{2t}{b}\Int{n}{\infty} l(k)^{-1}e^{-l(k)}\D k + = \frac{\sqrt{t}}{b} \Int{\lambda_n t}{\infty} e^{-z}z^{-\frac{3}{2}} \D z. +\end{equation} + +For $a>0$, $s>0$, integrating by parts gives +$\displaystyle \Int{a}{\infty} e^{-z}z^{-s}\D z < e^{-a}a^{-s}$, +and so +\begin{equation} + R_n(t) < \frac{1}{b t}\lambda_n^{-3/2}e^{-\lambda_n t}. +\end{equation} + +\section{Identities and integrals for tapered cable eigenfunctions} +\label{ap:conid} + +\newcommand{\Fp}{\smash{F^{\mathrlap{\prime}}}\mkern-2.0mu} +\newcommand{\Gp}{\smash{G^{\mathrlap{\prime}}}\mkern-2.0mu} + +Let +\begin{equation} + \begin{aligned} + F_k(z) &= z^{-\frac{k}{2}}\cZ_k(2z^{1/2}),& + G_k(z) &= z^{-\frac{k}{2}}\cC_k(2\omega z^{1/2}), + \end{aligned} +\end{equation} +where $C_k$ and $Z_k$ are solutions to the Bessel and modified Bessel equations +respectively, +\begin{equation} + \begin{aligned} + \cZ_k(z) &= c_1 I_k(z) + c_2 e^{i\pi k} K_k(z),& + \cC_k(z) &= c_3 J_k(z) + c_4 Y_k(z) + \end{aligned} +\end{equation} +for some constants $c_1$, $c_2$, $c_3$, $c_4$. + +$F_k$ and $G_k$ are solutions of the differential equations +\begin{gather} + z f''(z) + (k+1) f'(z) - z = 0\\ + \intertext{and} + z g''(z) + (k+1) g'(z) + \omega^2 z = 0 +\end{gather} +respectively, following the identity (2) of \autocite[p.~512]{lommel1879}. + +Applying the derivative and recurrence relations for Bessel functions +\autocite[\S 10.6, \S10.29]{nistdlmf} then gives the following identities, +\begin{align} + \label{eq:fgrel} + \Fp_k(z) &= F_{k+1}(z), & z \Fp_k(z) &= -k F_k(z) + F_{k-1}(z),\\ + \Gp_k(z) &= -\omega G_{k+1}(z), & z \Gp_k(z) &= -k G_k(z) + \omega G_{k-1}(z). +\end{align} +When $k$ is an integer, these imply +\begin{equation} + \begin{aligned} + F_{-k}(z) &= z^k F_k(z),\\ + G_{-k}(z) &= (-z)^k G_k(z), + \end{aligned} + \qquad \text{for $k\in\mathbb{Z}$}. +\end{equation} + +In the following, derivatives will be respect to $z$, and the argument $z$ to +$F_k$ and $G_k$ will be omitted where it is unambiguous. + +\subsection*{The integral $\Int{}{} z F_1 G_1 \D z$} + +The relations \eqref{eq:fgrel} give the identities +\begin{equation} + \begin{aligned} + \label{eq:fgrel2} + (z^kF_k)' &= z^{k-1}F_{k-1}\\ + (z^kG_k)' &= \omega z^{k-1}G_{k-1}. + \end{aligned} +\end{equation} +Consequently +\begin{equation} + \begin{aligned} + (z^2 F_2 G_1)' &= z F_1 G_1 + z^2 F_2 \Gp_1 = z F_1 G_1 - \omega z^2 F_2 G_2 \\ + (z^2 F_1 G_2)' &= z F_1 G_1 + z^2 \Fp_1 G_2 = z F_1 G_1 + z^2 F_2 G_2. + \end{aligned} +\end{equation} +Cancelling the $F_2G_2$ term gives +\begin{equation} + (z^2 F_2 G_1 + \omega z^2 F_1 G_2)' = + (1+\omega^2) z F_1 G_1, +\end{equation} +and so +\begin{equation} + (1+\omega^2) \Int{}{} z F_1 G_1 dz = z^2 F_2 G_1 + \omega z^2 F_1 G_2 = z^2 \Fp_1 G_1 - z^2 F_1 \Gp_1. +\end{equation} + +\subsection*{The integral $\Int{}{} z F_1 \D z$} + +As observed in \eqref{eq:fgrel2}, $(z^2 F_2)' = z F_1$, and so +\begin{equation} + \Int{}{} z F_1 dz = z^2 F_2 = z^2 \Fp_1. +\end{equation} + +\subsection*{The integral $\Int{}{} z G_1^2 \D z$} + +Following the technique of \autocite[p.533]{lommel1879}, +\begin{equation} + \begin{aligned} + (z^a G_k G_{m+1})' + &= a z^{a-1} G_k G_{m+1} + z^a(\Gp_k G_{m+1} + G_k \Gp_{m+1})\\ + &= a z^{a-1} G_k G_{m+1} - \omega z^a G_{k+1}G_{m+1} + z^{a-1} G_k(\omega G_m - (m+1) G_{m+1})\\ + &= (a-m-1) z^{a-1} G_k G_{m+1} + \omega z^{a-1} (zG_{k+1}G_{m+1} - G_k G_m). + \end{aligned} +\end{equation} +The last term is symmetric in $k$ and $m$, so +\begin{equation} + (z^a G_k G_{m+1} - z^a G_m G_{k+1})' = + (a-m-1) z^{a-1} G_k G_{m+1} - (a-k-1) z^{a-1} G_m G_{k+1}. +\end{equation} +Letting $a=k+1$ then gives, +\begin{equation} + (z^{k+1} G_k G_{m+1} - z^{k+1} G_{k+1} G_m)' = (k-m) z^k G_k G_{m+1}, +\end{equation} +and in particular, +\begin{equation} + \label{eq:intzg1sq} + \Int{}{} z G_1^2 \D z = z^2 G_1^2 - z^2 G_0 G_2. +\end{equation} + +The result \eqref{eq:intzg1sq} can be expressed in terms of just $G_1$ and $\Gp_1$ by +application of the recurrence relationships: +\begin{equation} + \label{eq:intzg1sqbis} + \Int{}{} z G_1^2 \D z = z^2 G_1^2 + \frac{z^2}{\omega^2} G_1 \Gp_1 + \frac{z^3}{\omega^2} G^{\prime 2}_1. +\end{equation} + + +\printbibliography +\end{document} diff --git a/doc/math/passive_cable/cable.bib b/doc/math/passive_cable/cable.bib deleted file mode 100644 index 1f47e75b738ede826221dbc4669e419c21bfaa30..0000000000000000000000000000000000000000 --- a/doc/math/passive_cable/cable.bib +++ /dev/null @@ -1,33 +0,0 @@ -@article{bhalla1992, - title = {Rallpacks: a set of benchmarks for neuronal simulators}, - author = {Upinder S. Bhalla and David H. Bilitch and James M. Bower}, - journal = {Trends in Neurosciences}, - volume = {15}, - number = {11}, - pages = {453--458}, - year = {1992}, - month = {11}, - doi = {10.1016/0166-2236(92)90009-W} -} - -@article{churchill1937, - title = {The inversion of the Laplace transformation by a direct expansion in series and its application to boundary-value problems}, - author = {R. V. Churchill}, - journal = {Mathematische Zeitschrift}, - volume = {42}, - number = {1}, - pages = {567--579}, - year = {1937}, - doi = {10.1007/BF01160095} -} - -@article{borwein2009, - title = {Uniform bounds for the complementary incomplete gamma function}, - author = {Jonathan M Borwein and O-Yeat Chan}, - journal = {Mathematical Inequalities and Applications}, - volume = {12}, - number = {1}, - pages = {115--121}, - year = {2009}, - doi = {10.7153/mia-12-10} -} diff --git a/doc/math/passive_cable/cable_computation.tex b/doc/math/passive_cable/cable_computation.tex deleted file mode 100644 index 888aa8a11890879818e2964ba4644744e434ab79..0000000000000000000000000000000000000000 --- a/doc/math/passive_cable/cable_computation.tex +++ /dev/null @@ -1,324 +0,0 @@ -\documentclass[parskip=half]{scrartcl} - -\usepackage{amsmath} -\usepackage{amssymb} -\usepackage[citestyle=authoryear-icomp,bibstyle=authoryear]{biblatex} -\usepackage{booktabs} -\usepackage[style=british]{csquotes} -\usepackage{fontspec} -\usepackage{siunitx} - -\setmainfont[Numbers=Lowercase]{TeX Gyre Pagella} -\newfontfamily\dispfamily{TeX Gyre Pagella} -\addtokomafont{disposition}{\dispfamily} - -\MakeAutoQuote{«}{»} -\DeclareMathOperator{\Res}{Res} - -\addbibresource{cable.bib} - -\title{Analytic solution to passive cable model} -\author{Sam Yates} -\date{October 20, 2016} - -\begin{document} - -\maketitle - -\section{Background} - -The Rallpack suite \parencite{bhalla1992} is a set of three tests for cable-based neuronal -simulators, for validation and benchmarking. Validation data is provided with the -distribution of the suite, which at the time of writing can now be found within the -\textsc{Genesis} simulator simulator distribution.\footnote{see \url{http://genesis-sim.org}.} - -The first two of the tests are based on passive cable models which admit analytic -solutions, and the Rallpack suite includes code that can generate the reference curves -for these models. The reference code, however, requires hand-tuning of the iterations; -the authors state in the internal documentation that -«the use of 10 terms gives at least six figure accuracy», but this is for the -fixed time increments used in their dataset and is not validated within the code -or by the supplied material. - -For flexibility of testing and cross-checking of the Rallpack reference data, -it would be useful to have at hand a robust calculator of the passive cable -potential solution. - -\section{The Rallpack 1 model} - -The model comprises a cylindrical cable segment with the physical and electrical -properties as described in Table~\ref{tbl:rallpack1}. A current of \SI{0.1}{\nA} -is injected at the left end of the cable from $t=0$, and the initial potential -is the reversal potential. - -\begin{table}[ht] - \centering - \begin{tabular}{lSl} - \toprule - Term & {Value} & Property\\ - \midrule - $d$ & \SI{1.0}{\um} & cable diameter \\ - $L$ & \SI{1.0}{\mm} & cable length \\ - $R_A$ & \SI{1.0}{\ohm\m} & bulk axial resistivity \\ - $R_M$ & \SI{4.0}{\ohm\m\squared} & areal membrane resistivity \\ - $C_M$ & \SI{0.01}{\F\per\m\squared} & areal membrane capacitance \\ - $E_M$ & \SI{-65.0}{\mV} & membrane reversal potential \\ - \bottomrule - \end{tabular} - \caption{Cable properties for the Rallpack 1 model.} - \label{tbl:rallpack1} -\end{table} - -The potential on a constant-radius passive cable is governed by the PDE -\begin{equation} - \lambda^2 \frac{\partial^2 v}{\partial x^2} = - \tau\frac{\partial v}{\partial t} + v - E, -\end{equation} -where $E$ is the membrane reversal potential, and $\lambda$ and $\tau$ are the -electrotonic length and time constants for the cable. It is convenient -to consider the electrical properties of the cable per unit-length, in terms -of the linear axial resistivity $r$, the linear membrane capacitance $r$, -and the linear membrane capacitance $c$. These determine $\lambda$ and $\tau$ by -\begin{gather*} - \lambda = \frac{1}{r\cdot g},\\ - \tau = r\cdot c. -\end{gather*} - -With the model boundary conditions, -\begin{subequations} - \begin{align} - v(x, 0) &= E, \\ - \left.\frac{\partial v}{\partial x}\right\vert_{x=0} & = -Ir, \\ - \left.\frac{\partial v}{\partial x}\right\vert_{x=L} & = 0, - \end{align} -\end{subequations} -where $I$ is the injected current and $L$ is the cable length. - -The solution $v(x, t)$ can be expressed in terms of the solution $g(x, t; L)$ -to a normalized version of the cable equation, -\begin{subequations} - \begin{align} - \label{eq:normcable} - \frac{\partial^2 g}{\partial x^2} & = - \frac{\partial g}{\partial t} + g, - \\ - \label{eq:normcableinitial} - g(x, 0) &= 0, - \\ - \label{eq:normcableleft} - \left.\frac{\partial g}{\partial x}\right\vert_{x=0} & = 1, - \\ - \label{eq:normcableright} - \left.\frac{\partial g}{\partial x}\right\vert_{x=L} & = 0 - \end{align} -\end{subequations} -by -\begin{equation} - v(x, t)= E - Ir\lambda \cdot g(\frac{x}{\lambda}, \frac{t}{\tau}; \frac{L}{\lambda}). -\end{equation} - -\section{Solution to the normalized cable equation} - -Let $G(x, s)$ be the Laplace transform of $g(x, t)$ with respect to $t$. -If the inverse transform of $G$ exists, it must agree with $g$ almost everywhere -for $t>0$, or for all $t>0$ given the continuity of $g$. - -From -\eqref{eq:normcable} and \eqref{eq:normcableinitial}, -\begin{equation} - \label{eq:lap} - \frac{\partial^2 G}{\partial x^2} = sG + G. -\end{equation} -The boundary conditions \eqref{eq:normcableleft} and \eqref{eq:normcableright} give -\begin{align} - \label{eq:lapleft} - \frac{\partial G}{\partial x}(0, s) & = \frac{1}{s} - \\ - \label{eq:lapright} - \frac{\partial G}{\partial x}(L, s) & = 0. -\end{align} - -Solutions to \eqref{eq:lap} must be of the form -\begin{equation} - G(x, s) = A(s) e^{mx} +B(s) e^{-mx} -\end{equation} -where $m=\sqrt{1+s}$. From \eqref{eq:lapleft} and \eqref{eq:lapright}, -\begin{align*} - mA(s) - mB(s) & = \frac{1}{s} - \\ - mA(s)e^{mL} -mB(s)e^{-mL} & = 0 -\end{align*} -and thus -\begin{align*} - A(s) & = \frac{1}{sm (1-e^{2mL})} - \\ - B(s) & = \frac{e^{2mL}}{sm (1-e^{2mL})}. -\end{align*} - -Consequently, -\begin{equation} - \begin{aligned} - G(x, s) &= \frac{1}{ms}\cdot\frac{e^{mx}+e^{2mL-mx}}{1-e^{2mL}}\\ - &= - \frac{1}{ms}\cdot\frac{\cosh m(L-x)}{\sinh mL}. - \end{aligned} -\end{equation} - -\subsection*{Inversion} - -Sufficient conditions for the inverse transform of $G(x,s)$ to exist -and be representable in series form are as follows -\parencite[][Theorem 4]{churchill1937}: -\begin{enumerate} -\item - $G(x, s)$ is analytic in some right half-plane $H$, -\item - the singularities of $G(x, s)$ are all poles, and -\item for some $k>1$, $|s^k G(x, s)|$ is bounded in $H$ and - on the circles $|s|=\rho_i$, where $\rho_i$ is an unbounded monotonically - increasing sequence. -\end{enumerate} -If in addition all the poles $\sigma_j$ of $G$ are simple, then -the series expansion of the inverse transform is given by -\begin{equation} - g(x,t) = \sum_j e^{\sigma_j t}\, \Res(G;\sigma_j),\quad t>0. -\end{equation} - -$G(x,s)$ has poles when $s=0$, $m=0$, or $\sinh mL=0$. -In the following, let -\begin{gather*} - a_k = k\pi /L\\ - m_k = a_k i\\ - s_k = m_k^2 -1 = -k^2\pi^2/L^2-1. -\end{gather*} -for $k\in\mathbb{Z}$. -The poles are then $0$, $-1$, and $s_k$ for $k\geq 1$. - -There are no branch points -arising from $m=\sqrt{1+s}$, as letting $m=-\sqrt{1+s}$ leaves $G$ unchanged. - -For $|s+1|>\epsilon$, -\begin{equation} - \begin{aligned} - |s^{3/2}G(x,s)|^2 - & \leq (1+\epsilon)^{-1} \left| \frac{\cosh m(L-x)}{\sinh mL} \right|^2 - \\ - & \leq (1+\epsilon)^{-1} (1+|\coth mL|)^2 - \label{eq:gbounds} - \end{aligned} -\end{equation} -which is bounded in the half-plane $\Re(s) \geq -1+\epsilon$. -As $\coth u+iv$ is periodic in $v$, \eqref{eq:gbounds} is also bounded outside -the regions $\{s: m\in D_k\}$, where $D_k$ are non-overlapping $\delta$-neighborhoods of $m_k$ -for some fixed small $\delta>0$. These are contained within disks of radius -$2k\pi\delta/L+\delta^2$ about $s_k$ for $k\geq 1$, which then are separated by -circles $|s|=\rho_k$ about the origin for some $\rho_k$ in $(|s_k|, |s_k+1|)$. - -\textbf{Pole at $s=0$}.\\ -Recalling $m=\sqrt{1+s}$, $m$ and $\sinh mL$ are non-zero in -a neighbourhood of $s=0$, and so the pole is simple and -\begin{equation} - \begin{aligned} - \Res(G; 0) & = - \frac{1}{m}\cdot\left.\frac{\cosh m(L-x)}{\sinh mL}\right|_{s=0}\\ - & = - \frac{\cosh (L-x)}{\sinh L}. - \end{aligned} -\end{equation} - -\textbf{Pole at $s=-1$}.\\ -Let $G(x,s)=f(x,s)/h(s)$, where -\begin{equation} - \begin{aligned} - f(x, s) &= -\frac{1}{s}\cosh m(L-x)\\ - h(s) &= m\sinh mL. - \end{aligned} - \label{eq:hf} -\end{equation} -Noting that $dm/ds = \frac{1}{2}m^{-1}$, -\begin{equation} - \begin{aligned} - h'(s) &= \frac{1}{2}m^{-1}\sinh mL + \frac{1}{2}L\cosh mL \\ - &= \frac{1}{2}L + \frac{1}{2}L + O(m^2) \quad(m\to 0) \\ - &= L + O(s+1) \quad(s\to -1). - \label{eq:hprime} - \end{aligned} -\end{equation} -The pole is therefore simple, and -\begin{equation} - \Res(G; -1) = f(x, -1)/h'(-1) = -\frac{1}{L}. -\end{equation} - -\textbf{Pole at $s=s_k$, $k \geq 1$}.\\ -Taking $h$ and $f$ as above \eqref{eq:hf}, -$m_k$ is non-zero for $k\geq 1$ and -\[ - h'(s_k) = \frac{1}{2}L\cosh m_kL. -\] -Consequently the pole is simple and -\begin{equation} - \begin{aligned} - \Res(G; s_k) - & = f(x, s_k)/h'(s_k)\\ - & = -\frac{2}{s_k L}\frac{\cosh m_k(L-x)}{\cosh m_kL} \\ - & = -\frac{2}{s_k L}\frac{\cosh m_kL\cosh m_kx-\sinh m_kL\sinh m_kL}{\cosh m_kL} \\ - & = -\frac{2}{s_k L}\cosh m_k x, - \end{aligned} -\end{equation} -as $\sinh m_k=0$. - -In terms of $a_k$, -\begin{equation} - \Res(G; s_k) = \frac{2}{L}\cdot\frac{1}{1+a_k^2}\cdot\cos a_kx. -\end{equation} - -The series exapnsion for $g(x, t)$ therefore is -\begin{equation} - g(x, t) = -\frac{\cosh(L-x)}{\sinh L} + \frac{1}{L}e^{-t}\left\{ - 1+2\sum_{k=1}^\infty \frac{e^{-ta_k^2}}{1+a_k^2}\cos a_k x\right\}. - \label{eq:theg} -\end{equation} - -\section{Computation of series} - -As $t$ approaches zero, the series \eqref{eq:theg} converges increasingly slowly. -For computational purposes, an estimate on the series residual allows the determination -of stopping criteria for a given tolerance. - -Let $g_n$ be the partial sum -\begin{equation} - g_n(x, t) = -\frac{\cosh(L-x)}{\sinh L} + \frac{1}{L}e^{-t}\left\{ - 1+2\sum_{k=1}^n \frac{e^{-ta_k^2}}{1+a_k^2}\cos a_k x\right\}. -\end{equation} -so that $g(x, t) =\lim_{n\to\infty} g_n(x,t)$. Let $\bar{g}_n = |g-g_n|$ be the -residual. The $a_k$ form an increasing sequence, so -\begin{equation} - \begin{aligned} - \bar{g}_n(x,t) - & \leq \frac{2}{L}e^{-t}\sum_{n+1}^\infty\frac{e^{-ta_k^2}}{1+a_k^2}\\ - & \leq \frac{2}{L}e^{-t}\int_{a_n}^\infty \frac{e^{-tu^2}}{1+u^2}\,du\\ - & < \frac{2}{L}e^{-t}\int_{a_n}^\infty \frac{e^{-tu^2}}{u^2}\,du. - \end{aligned} - \label{eq:gbar} -\end{equation} -Substituting $u=\sqrt{v/t}$ gives the identity -\begin{equation} - \int_{a}^\infty \frac{e^{-tu^2}}{u^2}\,du - = \frac{1}{2}\sqrt{t}\int_{a^2t}^\infty e^{-tv} v^{\frac{-3}{2}}\,dv - = \frac{1}{2}\sqrt{t}\,\Gamma(-\frac{1}{2},a^2 t), -\end{equation} -where $\Gamma(\alpha, z)$ is the upper incomplete gamma function. - -For real $\alpha<1$ and $z>0$, \textcite[][Theorem 2.3]{borwein2009} give the upper bound -\[ - \Gamma(\alpha, z) \leq z^{\alpha-1} e^{-z}. -\] -Substituting into \eqref{eq:gbar} gives -\begin{equation} - \begin{aligned} - \bar{g}_n(x,t) - & < \frac{1}{L}e^{-t}\sqrt{t}\,\Gamma(-\frac{1}{2},a_n^2 t) \\ - & \leq \frac{1}{L}e^{-t}\sqrt{t}\,(a_n^2 t)^{-\frac{3}{2}}e^{-a_n^2t} \\ - & = \frac{e^{-t(1+a_n^2)}}{L t a_n^3}. - \end{aligned} -\end{equation} - -\printbibliography -\end{document} diff --git a/doc/math/passive_cable/makefile b/doc/math/passive_cable/makefile deleted file mode 100644 index 8756af0b9b8f33a1a145a07259d07a335a86de86..0000000000000000000000000000000000000000 --- a/doc/math/passive_cable/makefile +++ /dev/null @@ -1,14 +0,0 @@ -SOURCES := cable_computation.tex - -LATEXMK := latexmk -e '$$clean_ext=q/bbl run.xml/' -xelatex -use-make -halt-on-error - -all: cable_computation.pdf - -cable_computation.pdf: cable_computation.tex cable.bib - $(LATEXMK) $< - -clean: - for s in $(SOURCES); do $(LATEXMK) -c "$$s"; done - -realclean: - for s in $(SOURCES); do $(LATEXMK) -C "$$s"; done