Skip to content
Snippets Groups Projects
Commit fb2387d6 authored by Didi Hou's avatar Didi Hou Committed by Administrator
Browse files

/

parent 9b4fa581
No related branches found
No related tags found
1 merge request!35Pre-release MAM v1.1.0
...@@ -17,6 +17,29 @@ from matplotlib import gridspec ...@@ -17,6 +17,29 @@ from matplotlib import gridspec
icolor = myred icolor = myred
ecolor = myblue ecolor = myblue
# label_spikes = M.simulation.label
label = M.simulation.label
from MAM2EBRAINS_LOAD_DATA import load_and_create_data
A = load_and_create_data(M)
def plot_instan_mean_firing_rate(M):
# load spike data and calculate instantaneous and mean firing rates
data = np.loadtxt(M.simulation.data_dir + '/recordings/' + M.simulation.label + "-spikes-1-0.dat", skiprows=3)
tsteps, spikecount = np.unique(data[:,1], return_counts=True)
firing_rate = spikecount / M.simulation.params['dt'] * 1e3 / np.sum(M.N_vec)
# visualize calculate instantaneous and mean firing rates
ax = pl.subplot()
ax.plot(tsteps, rate)
ax.plot(tsteps, np.average(rate)*np.ones(len(tsteps)), label='mean')
ax.set_title('Instantaneous and mean firing rate across all populations')
ax.set_xlabel('time (ms)')
ax.set_ylabel('firing rate (spikes / s)')
ax.set_xlim(0, sim_params['t_sim'])
ax.set_ylim(0, 50)
ax.legend()
def set_boxplot_props(d): def set_boxplot_props(d):
for i in range(len(d['boxes'])): for i in range(len(d['boxes'])):
if i % 2 == 0: if i % 2 == 0:
......
...@@ -17,6 +17,29 @@ from matplotlib import gridspec ...@@ -17,6 +17,29 @@ from matplotlib import gridspec
icolor = myred icolor = myred
ecolor = myblue ecolor = myblue
# label_spikes = M.simulation.label
label = M.simulation.label
from MAM2EBRAINS_LOAD_DATA import load_and_create_data
A = load_and_create_data(M)
def plot_instan_mean_firing_rate(M):
# load spike data and calculate instantaneous and mean firing rates
data = np.loadtxt(M.simulation.data_dir + '/recordings/' + M.simulation.label + "-spikes-1-0.dat", skiprows=3)
tsteps, spikecount = np.unique(data[:,1], return_counts=True)
firing_rate = spikecount / M.simulation.params['dt'] * 1e3 / np.sum(M.N_vec)
# visualize calculate instantaneous and mean firing rates
ax = pl.subplot()
ax.plot(tsteps, rate)
ax.plot(tsteps, np.average(rate)*np.ones(len(tsteps)), label='mean')
ax.set_title('Instantaneous and mean firing rate across all populations')
ax.set_xlabel('time (ms)')
ax.set_ylabel('firing rate (spikes / s)')
ax.set_xlim(0, sim_params['t_sim'])
ax.set_ylim(0, 50)
ax.legend()
def set_boxplot_props(d): def set_boxplot_props(d):
for i in range(len(d['boxes'])): for i in range(len(d['boxes'])):
if i % 2 == 0: if i % 2 == 0:
......
def plot_instan_mean_firing_rate(M):
# load spike data and calculate instantaneous and mean firing rates
data = np.loadtxt(M.simulation.data_dir + '/recordings/' + M.simulation.label + "-spikes-1-0.dat", skiprows=3)
tsteps, spikecount = np.unique(data[:,1], return_counts=True)
firing_rate = spikecount / M.simulation.params['dt'] * 1e3 / np.sum(M.N_vec)
ax = pl.subplot()
ax.plot(tsteps, rate)
ax.plot(tsteps, np.average(rate)*np.ones(len(tsteps)), label='mean')
ax.set_title('Instantaneous and mean firing rate across all populations')
ax.set_xlabel('time (ms)')
ax.set_ylabel('firing rate (spikes / s)')
ax.set_xlim(0, sim_params['t_sim'])
ax.set_ylim(0, 50)
ax.legend()
\ No newline at end of file
This diff is collapsed.
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment