Skip to content
Snippets Groups Projects
Commit acbc4003 authored by Maximilian Schmidt's avatar Maximilian Schmidt
Browse files

Add missing file, update README, fix formatting figure script, add missing requirement

parent 3e8e362a
No related branches found
No related tags found
1 merge request!1Add all necessary files for the multi-area model
......@@ -184,7 +184,7 @@ To install the required packages in a conda environment, execute:
Note that NEST needs to be installed separately, see <http://www.nest-simulator.org/installation/>.
In addition, reproducing the figures of [1] requires networkx, python-igraph and pyx. To install these additional packages, execute:
In addition, reproducing the figures of [1] requires networkx, python-igraph, pycairo and pyx. To install these additional packages, execute:
`pip install -r figures/Schmidt2018/additional_requirements.txt`
......
......@@ -2,7 +2,6 @@ import matplotlib.pyplot as pl
import numpy as np
import json
import pyx
import subprocess
import os
from helpers import area_list, population_labels, layer_labels
......@@ -31,7 +30,6 @@ if NEURON_DENSITIES_AVAILABLE:
print(width, height)
pl.rcParams['figure.figsize'] = (width, height)
axes = {}
gs1 = gridspec.GridSpec(1, 1)
gs1.update(left=0.1, right=0.47, top=0.95, bottom=0.75, wspace=0.1, hspace=0.3)
......@@ -43,7 +41,6 @@ if NEURON_DENSITIES_AVAILABLE:
axes['B2'] = pl.subplot(gs2[1:2, :1])
axes['B3'] = pl.subplot(gs2[2:3, :1])
gs3 = gridspec.GridSpec(3, 1)
gs3.update(left=0.6, right=0.95, top=0.65, bottom=0.1, wspace=0.1, hspace=0.8)
axes['D'] = pl.subplot(gs3[:1, :1])
......@@ -80,7 +77,6 @@ if NEURON_DENSITIES_AVAILABLE:
'horizontalalignment': 'left', 'verticalalignment':
'bottom'}, transform=axes[label].transAxes)
data = np.loadtxt(os.path.join(raw_datapath, 'RData_prepared_logdensities.txt'),
skiprows=3, dtype='S10')
target = np.array(data[:, 1], dtype=str)
......@@ -124,11 +120,9 @@ if NEURON_DENSITIES_AVAILABLE:
y += overlap['visual'][area_key + '_M132'][FV91] / 100.
neuron_densities[area] = {'overall': x / y}
def integrand(x, mu, sigma):
return 1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(-(x - mu) ** 2 / (2. * sigma ** 2))
def probit(x,):
if isinstance(x, np.ndarray):
res = [integrate.quad(integrand, -1000., ii,
......@@ -137,11 +131,9 @@ if NEURON_DENSITIES_AVAILABLE:
res = integrate.quad(integrand, -1000., x, args=(0., 1.))[0]
return res
def chi2(x, y, z, n):
return 1. / (n) * np.sum(((x - y) / z) ** 2)
"""
Fit of SLN vs. architectural type differences
"""
......
......@@ -6,7 +6,7 @@ Please note: Figures 2, 5, and 8 show slight deviations from the published figur
Please note that the placement of areas in Figure 7 will deviate from the published figure, because their location depends on the force-directed algorithm implemented in `igraph` and `python-igraph` does not allow manual setting of the random seed for the algorithm. This is a mere visual issue and does not affect the scientific content.
Please note that, since we currently cannot publish the data on Neuronal Densities, Figure 2 can currently not be produced and executing it throws an error.
Please note that, since we currently cannot publish the data on Neuronal Densities, Figures 2 and 5 can currently not be produced and executing it throws an error.
If snakemake is installed, the figures can be produced by executing
......
python-igraph
networkx
pycairo
python-igraph
pyx
\pnode(1.55, 0.9){s6E}{}
\pnode(1.55, 1.9){s5E}{}
\pnode(1.55, 2.9){s4E}{}
\pnode(1.55, 3.9){s23E}{}
\pnode(4.75, 0.9){t6E}{}
\pnode(4.75, 1.9){t5E}{}
\pnode(4.75, 2.9){t4E}{}
\pnode(4.75, 3.9){t23E}{}
\pnode(5.75, 0.9){t6I}{}
\pnode(5.75, 1.9){t5I}{}
\pnode(5.75, 2.9){t4I}{}
\pnode(5.75, 3.9){t23I}{}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment