Skip to content
Snippets Groups Projects
Commit 405e67fe authored by Maximilian Schmidt's avatar Maximilian Schmidt
Browse files

Update Fig3 stabilization script

parent 4ff2a6a9
No related branches found
No related tags found
1 merge request!1Add all necessary files for the multi-area model
......@@ -32,39 +32,81 @@ ax = panel_factory.new_empty_panel(
"""
Load data
"""
load_path = os.getenv('HOME') + '/datasets_USB/datasets/Simulations/data_dynamics_manuscript/'
data = {}
# Common parameter settings
input_params = {'rate_ext': 10.}
neuron_params = {'V0_mean': -150.,
'V0_sd': 50.}
os.chdir(os.path.join('sim_Model1B_533d73357fbe99f6178029e6054b571b485f40f6'))
with open('Analysis/pop_rates.json', 'r') as f:
data['LA'] = json.load(f)
sim_params = {'t_sim': 10500.,
'num_processes': 720, # Needs to be adapted to the HPC system used
'local_num_threads': 1, # Needs to be adapted to the HPC system used
'recording_dict': {'record_vm': False}}
os.chdir(os.path.join('sim_Model1B_0adda4a542c3d5d43aebf7c30d876b6c5fd1d63e'))
with open('Analysis/pop_rates.json', 'r') as f:
data['HA'] = json.load(f)
theory_params = {'T': 30.,
'dt': 0.01}
"""
Simulation with kappa = 1. leading to the low-activity fixed point
shown in Fig. 4D.
"""
d = {}
conn_params = {'g': -16.,
'fac_nu_ext_TH': 1.2,
'fac_nu_ext_5E': 1.,
'fac_nu_ext_6E': 1.,
'av_indegree_V1': 3950.}
network_params = {'N_scaling': 1.,
'K_scaling': 1.,
'connection_params': conn_params,
'neuron_params': neuron_params,
'input_params': input_params}
M_LA = MultiAreaModel(network_params, simulation=True,
sim_spec=sim_params,
analysis=True)
M_LA.analysis.create_pop_rates()
labels_top = ['C', 'D']
labels_bottom = ['E', 'F']
M = MultiAreaModel({})
"""
Simulation with kappa = 1.125 leading to the high-activity fixed point
shown in Fig. 4E.
"""
conn_params = {'g': -16.,
'fac_nu_ext_TH': 1.2,
'fac_nu_ext_5E': 1.125,
'fac_nu_ext_6E': 1.41666667,
'av_indegree_V1': 3950.}
network_params = {'N_scaling': 1.,
'K_scaling': 1.,
'connection_params': conn_params,
'neuron_params': neuron_params}
M_HA = MultiAreaModel(network_params, simulation=True,
sim_spec=sim_params,
analysis=True)
M_HA.analysis.create_pop_rates()
data = {'LA': M_LA.pop_rates,
'HA': M_HA.pop_rates}
"""
Plot data of LA and HA state using
plot functions define rate_matrix_plot.py
"""
for ii, k in enumerate(['LA', 'HA']):
labels_top = ['C', 'D']
labels_bottom = ['E', 'F']
for i, k in enumerate(['LA', 'HA']):
ax = panel_factory.new_panel(
ii, 2, labels_top[ii], label_position=-0.25)
i, 2, labels_top[i], label_position=-0.25)
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticks_position('bottom')
matrix = np.zeros((len(area_list), 8))
for i, area in enumerate(area_list):
for j, pop in enumerate(M.structure['V1'][::-1]):
if pop not in M.structure[area]:
for j, pop in enumerate(M_LA.structure['V1'][::-1]):
if pop not in M_LA.structure[area]:
rate = np.nan
else:
rate = data[k][area][pop][0]
......@@ -75,9 +117,9 @@ for ii, k in enumerate(['LA', 'HA']):
matrix = np.transpose(matrix)
ax2 = panel_factory.new_empty_panel(
ii, 3, labels_bottom[ii], label_position=-0.2)
i, 3, labels_bottom[i], label_position=-0.2)
if ii == 0:
if i == 0:
rate_matrix_plot(panel_factory.figure, ax, matrix, position='left')
rate_histogram_plot(panel_factory.figure, ax2,
matrix, position='left')
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment