Skip to content
Snippets Groups Projects
Commit 274d25c6 authored by Maximilian Schmidt's avatar Maximilian Schmidt
Browse files

Fix loading of data for Analysis.pop_rate_dists, fix filename in network_scaling test

parent e0d0b55d
No related branches found
No related tags found
1 merge request!1Add all necessary files for the multi-area model
......@@ -23,6 +23,7 @@ Sacha van Albada
from . import analysis_helpers as ah
import glob
import inspect
from itertools import chain, product
import json
import matplotlib.pyplot as plt
import numpy as np
......@@ -279,11 +280,13 @@ class Analysis:
iterator = ah.model_iter(mode='single',
areas=params['areas'],
pops=params['pops'])
elements = [('histogram',), ('stats-mu',), ('stats-sigma',)]
iter_list = [tuple(chain.from_iterable(prod)) for
prod in product(iterator, elements)]
# Check if population rates have been stored with the same parameters
self.pop_rate_dists = ah._check_stored_data(os.path.join(self.output_dir,
'pop_rate_dists'),
copy(iterator), params)
iter_list, params)
if self.pop_rate_dists is None:
print("Computing population dists")
......
import os
import sys
from multiarea_model import MultiAreaModel
from io import StringIO
"""
Test analysis class:
......@@ -31,3 +33,15 @@ def test_analysis():
M.analysis.create_pop_LvR(t_min=100.)
M.analysis.save()
out = StringIO()
sys.stdout = out
M.analysis.create_pop_rates(t_min=100.)
M.analysis.create_pop_rate_dists(t_min=100.)
M.analysis.create_synchrony(t_min=100.)
M.analysis.create_rate_time_series(t_min=100.)
M.analysis.create_synaptic_input(t_min=100.)
M.analysis.create_pop_cv_isi(t_min=100.)
M.analysis.create_pop_LvR(t_min=100.)
sys.stdout = sys.__stdout__
val = out.getvalue()
assert(val.count("Loading data from") == 9)
......@@ -25,12 +25,12 @@ def test_network_scaling():
M0.area_list,
M0.structure)
with open('fullscale_rates.json', 'w') as f:
with open('mf_rates.json', 'w') as f:
json.dump(d, f)
network_params = {'N_scaling': .1,
'K_scaling': .1,
'fullscale_rates': 'fullscale_rates.json'}
'fullscale_rates': 'mf_rates.json'}
theory_params = {'initial_rates': r0[:, -1]}
M = MultiAreaModel(network_params, theory=True, theory_spec=theory_params)
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment