Skip to content
Snippets Groups Projects
Select Git revision
  • a2bc2f26503902ae73ad8ec1a6f0dbbf58064847
  • master default protected
2 results

experiment-storage-service.js

Blame
  • run_example_fullscale.py NaN GiB
    import numpy as np
    import os
    
    from multiarea_model import MultiAreaModel
    from start_jobs import start_job
    from config import submit_cmd, jobscript_template
    from config import base_path
    
    """
    Example script showing how to simulate the multi-area model
    on a cluster.
    
    We choose the same configuration as in
    Fig. 3 of Schmidt et al. (2018).
    
    """
    
    """
    Full model. Needs to be simulated with sufficient
    resources, for instance on a compute cluster.
    """
    d = {}
    conn_params = {'g': -11.,
                   'K_stable': os.path.join(base_path, 'K_stable.npy'),
                   'fac_nu_ext_TH': 1.2,
                   'fac_nu_ext_5E': 1.125,
                   'fac_nu_ext_6E': 1.41666667,
                   'av_indegree_V1': 3950.}
    input_params = {'rate_ext': 10.}
    neuron_params = {'V0_mean': -150.,
                     'V0_sd': 50.}
    network_params = {'N_scaling': 1.,
                      'K_scaling': 1.,
                      'connection_params': conn_params,
                      'input_params': input_params,
                      'neuron_params': neuron_params}
    
    sim_params = {'t_sim': 2000.,
                  'num_processes': 720,
                  'local_num_threads': 1,
                  'recording_dict': {'record_vm': False}}
    
    theory_params = {'dt': 0.1}
    
    M = MultiAreaModel(network_params, simulation=True,
                       sim_spec=sim_params,
                       theory=True,
                       theory_spec=theory_params)
    p, r = M.theory.integrate_siegert()
    print("Mean-field theory predicts an average "
          "rate of {0:.3f} spikes/s across all populations.".format(np.mean(r[:, -1])))
    start_job(M.simulation.label, submit_cmd, jobscript_template)