diff --git a/moose-examples/docs/source/install/index.rst~ b/moose-examples/docs/source/install/index.rst~
deleted file mode 100644
index 5eb7a17d4624f8d036386d0654ee00d92cf97e92..0000000000000000000000000000000000000000
--- a/moose-examples/docs/source/install/index.rst~
+++ /dev/null
@@ -1,207 +0,0 @@
-Installation
-============
-
-Use pre-built packages
-----------------------
-
-Linux
-^^^^^
-
-We recommend that you use our repositories hosted at `Open Build Service
-<http://build.opensuse.org>`_.  We have packages for the following distributions
-
-- Debian 7.0, 8.0
-- Ubuntu 12.04, 14.04, 15.04, 15.10, 16.04 
-- CentOS 6, 7 
-- Fedora 20, 21, 22, 23
-- OpenSUSE 13.1, 13.2, Factory ARM, Leap 42.1, Tumbleweed
-- SLE 12, 12 SP1
-- RHEL 7
-- Scientific Linux 7
-  
-Visit `this page
-<https://software.opensuse.org/download.html?project=home:moose&package=moose>`_
-pick you distribution and follow instructions.
-
-.. note:: 
-    ``moogli`` (tool to visualize network activity) is not available for CentOS-6. 
-
-.. raw:: html
-    <iframe
-    src="http://software.opensuse.org/download/package.iframe?project=moose&package=moose"></iframe>
-
-.. todo:: Packages for gentoo, Arch Linux
-
-
-Mac OSX
-^^^^^^
-
-Download the ``dmg`` file from `here <https://github.com/BhallaLab/moose/releases/download/ghevar_3.0.2/Moose_3.0.2_OSX.dmg>`_.
-
-Alternatively, you can use ``homebrew`` to install ``moose``
-::
-    $ brew install homebrew/science/moose
-
-
-Windows/Cygwin
-^^^^^^^^^^^^^^
-
-Building MOOSE 
---------------
-
-In case your distribution is not listed on `our repository page
-<https://software.opensuse.org/download.html?project=home:moose&package=moose>`_
-, or if you want to build the lastest development code, read on.
-
-First, you need to get the source code. You can use ``git`` (clone the 
-repository) or download snapshot of github repo by clicking on `this link
-<https://github.com/BhallaLab/moose/archive/master.zip>`_.::
-    $ git clone https://github.com/BhallaLab/moose
-
-Or,
-::
-    $ wget https://github.com/BhallaLab/moose/archive/master.zip
-    $ unzip master.zip
-
-If you don't want lasest snapshot of ``MOOSE``, you can download other released
-versions from here `https://github.com/BhallaLab/moose/releases`.
-
-Install dependencies
-~~~~~~~~~~~~~~~~~~~
-
-Next, you need to install required dependencies. Depending on your OS, names of 
-following packages may vary.
-
-- cmake (version 2.8 or higher)
-- gsl-1.16 or higher `download <ftp://ftp.gnu.org/gnu/gsl/>`_.
-- libhdf5 development package e.g. `libhdf5-serial-dev` or `libhdf5-devel`
-- python development package e.g. `python-dev` or `python-devel`
-- numpy e.g. `python-numpy` or `numpy`
-
-Most of the dependencies can be installed using package manager.
-
-On ``Debian/Ubuntu`` 
-::
-    $ sudo apt-get install libhdf5-dev cmake libgsl0-dev libpython-dev python-numpy 
-
-.. note::
-    Ubuntu 12.04 does not have required version of ``gsl`` (required 1.16 or
-    higher, available 1.15). On Ubuntu 16.04, package name is ``libgsl-dev``. 
-
-On ``CentOS/Fedora/RHEL/Scientific Linux``  
-::
-    $ sudo yum install hdf5-devel cmake libgsl-dev python-devel python-numpy
-
-On ``OpenSUSE``  
-::
-    $ sudo zypper install hdf5-devel cmake libgsl-dev python-devel python-numpy 
-
-Now use `cmake` to build moose
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-.. codeblock:: bash
-    $ cd /to/moose/source/code
-    $ mkdir _build
-    $ cd _build 
-    $ cmake  ..
-    $ make 
-    $ ctest --output-on-failure  # optional
-
-This will build pyMOOSE (MOOSE's python extention), `ctest` will run few tests to
-check if build process was successful.
-
-.. note::
-    To install MOOSE into non-standard directory, pass additional argument
-    `-DCMAKE_INSTALL_PREFIX=path/to/install/dir` to cmake 
-    ::
-        $ cmake -DCMAKE_INSTALL_PREFIC=$HOME/.local .. 
-
-    To use different version of python 
-    ::
-        $ cmake -DPYTHON_EXECUTABLE=/opt/python3/bin/python3 ..
-
-After that installation is pretty easy 
-::
-    $ sudo make install
-
-If everything went fine, you should be able to import moose in python shell.
-
-.. code-block:: python
-    import moose
-
-
-Graphical User Interface (GUI)
-------------------------------
-
-You can get the source of ``moose-gui`` from `here
-<https://github.com/BhallaLab/moose-gui>`_. You can download it either by
-clicking on `this link <https://github.com/BhallaLab/moose-gui/archive/master.zip>`_ 
-or by using ``git`` ::
-    $ git clone https://github.com/BhallaLab/moose-gui
-
-To be able to launch ``moose-gui``, you need to install some more packages
-
-- matplotlib 
-- python-qt4
-
-On ``Ubuntu/Debian``, these can be installed with
-::
-    $ sudo apt-get install python-matplotlib python-qt4
-
-On ``CentOS/Fedora/RHEL``
-::
-    $ sudo yum install python-matplotlib python-qt4 
-
-Now you can fire up the GUI
-::
-    $ cd /to/moose-gui
-    $ python mgui.py 
-
-.. note:: 
-    If you have installed ``moose`` package, then GUI is launched by
-    running following commnad::
-        $ moose
-
-Building moogli 
----------------
-
-``moogli`` is subproject of ``MOOSE`` for visualizing models. More details can
-be found `here <http://moose.ncbs.res.in/moogli>`_.
-
-`Moogli` is part of `moose` package. Building moogli can be tricky because of 
-multiple depednecies it has.
-
-
-To get the latest source code of ``moogli``, click on `this link <https://github.com/BhallaLab/moogli/archive/master.zip>`_.
-
-Moogli depends on ``OpenSceneGraph`` (version 3.2.0 or higher) which may not 
-be easily available for your operating system.
-For this reason, we distribute required ``OpenSceneGraph`` with ``moogli``
-source code.
-
-Depending on distribution of your operating system, you would need following
-packages to be installed.
-
-On ``Ubuntu/Debian``
-::
-    $ sudo apt-get install python-qt4-dev python-qt4-gl python-sip-dev libqt4-dev 
-
-On ``Fedora/CentOS/RHEL``
-::
-    $ sudo yum install sip-devel PyQt4-devel qt4-devel libjpeg-devel PyQt4 
-
-On ``openSUSE``
-::
-    $ sudo zypper install python-sip python-qt4-devel libqt4-devel python-qt4
-
-After this, building and installing ``moogli`` should be as simple as
-::
-    $ cd /path/to/moogli
-    $ mkdir _build
-    $ cd _build
-    $ cmake ..
-    $ make 
-    $ sudo make install
-
-If you run into troubles, please report it on our `github repository
-<https://github.com/BhallaLab/moose/issues>`_.
diff --git a/moose-examples/docs/source/install/moose_quickstart.rst~ b/moose-examples/docs/source/install/moose_quickstart.rst~
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/moose-examples/snippets/analogStimTable.py~ b/moose-examples/snippets/analogStimTable.py~
deleted file mode 100644
index f1cf3c6c21846263b634a0317f373133f90ad808..0000000000000000000000000000000000000000
--- a/moose-examples/snippets/analogStimTable.py~
+++ /dev/null
@@ -1,95 +0,0 @@
-# analogStimTable.py ---
-#
-# Filename: analogStimTable.py
-# Description:
-# Author: Upi Bhalla
-#
-# This program is free software; you can redistribute it and/or
-# modify it under the terms of the GNU General Public License as
-# published by the Free Software Foundation; either version 3, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-# General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street, Fifth
-# Floor, Boston, MA 02110-1301, USA.
-#
-
-import numpy as np
-import pylab
-import moose
-from moose import utils
-
-def analogStimTable():
-    simtime = 150
-    simdt = 0.1
-    model = moose.Neutral('/model')
-    data = moose.Neutral('/data')
-    # This is the stimulus generator
-    stimtable = moose.StimulusTable('/model/stim')
-    a = moose.BufPool( '/model/a' )
-    b = moose.Pool( '/model/b' )
-    reac = moose.Reac( '/model/reac' )
-    reac.Kf = 0.1
-    reac.Kb = 0.1
-    moose.connect( stimtable, 'output', a, 'setConcInit' )
-    moose.connect( reac, 'sub', a, 'reac' )
-    moose.connect( reac, 'prd', b, 'reac' )
-    aPlot = moose.Table('/data/aPlot')
-    moose.connect(aPlot, 'requestOut', a, 'getConc')
-    bPlot = moose.Table('/data/bPlot')
-    moose.connect(bPlot, 'requestOut', b, 'getConc')
-    moose.setClock( stimtable.tick, simdt )
-    moose.setClock( a.tick, simdt )
-    moose.setClock( aPlot.tick, simdt )
-
-    ####################################################
-    # Here we set up the stimulus table. It is half a sine-wave.
-    stim = [ np.sin(0.01 * float(i) ) for i in range( 314 )]
-    stimtable.vector = stim
-    stimtable.stepSize = 0 # This forces use of current time as x value
-
-    # The table will interpolate its contents over the time start to stop:
-    # At values less than startTime, it emits the first value in table
-    stimtable.startTime = 5
-    # At values more than stopTime, it emits the last value in table
-    stimtable.stopTime = 60
-    stimtable.doLoop = 1 # Enable repeat playbacks.
-    stimtable.loopTime = 10 + simtime / 2.0 # Repeat playback over this time
-
-    moose.reinit()
-    moose.start(simtime)
-    t = [ x * simdt for x in range( len( aPlot.vector ) )]
-    pylab.plot( t, aPlot.vector, label='Stimulus waveform' )
-    pylab.plot( t, bPlot.vector, label='Reaction product b' )
-    pylab.legend()
-    pylab.show()
-
-def main():
-    """
-Example of using a StimulusTable as an analog signal source in
-a reaction system. It could be used similarly to give other
-analog inputs to a model, such as a current or voltage clamp signal.
-
-This demo creates a StimulusTable and assigns it half a sine wave.
-Then we assign the start time and period over which to emit the wave.
-The output of the StimTable is sent to a pool **a**, which participates
-in a trivial reaction::
-
-    table ----> a <===> b
-
-The output of **a** and **b** are recorded in a regular table
-for plotting.
-    """
-    analogStimTable()
-
-if __name__ == '__main__':
-    main
-
-#
-# stimtable.py ends here
diff --git a/moose-examples/snippets/function.py~ b/moose-examples/snippets/function.py~
deleted file mode 100644
index 8b574ea0e842549f2b96304a7795df254ba13e6d..0000000000000000000000000000000000000000
--- a/moose-examples/snippets/function.py~
+++ /dev/null
@@ -1,200 +0,0 @@
-# function.py ---
-#
-# Filename: function.py
-# Description:
-# Author: Subhasis Ray
-# Maintainer:
-# Created: Tue Sep  9 17:59:50 2014 (+0530)
-# Version:
-# Last-Updated: Sun Dec 20 00:02:50 2015 (-0500)
-#           By: subha
-#     Update #: 4
-# URL:
-# Keywords:
-# Compatibility:
-#
-#
-
-# Commentary:
-#
-#
-#
-#
-
-# Change log:
-#
-#
-#
-#
-# This program is free software; you can redistribute it and/or
-# modify it under the terms of the GNU General Public License as
-# published by the Free Software Foundation; either version 3, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-# General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street, Fifth
-# Floor, Boston, MA 02110-1301, USA.
-#
-#
-
-# Code:
-
-import numpy as np
-import sys
-import matplotlib.pyplot as plt
-
-import moose
-
-simtime = 1.0
-
-def example():
-    demo = moose.Neutral('/model')
-    function = moose.Function('/model/function')
-    function.c['c0'] = 1.0
-    function.c['c1'] = 2.0
-    function.x.num = 1
-    function.expr = 'c0 * exp(c1*x0) * cos(y0) + sin(t)'
-    # mode 0 - evaluate function value, derivative and rate
-    # mode 1 - just evaluate function value,
-    # mode 2 - evaluate derivative,
-    # mode 3 - evaluate rate
-    function.mode = 0
-    function.independent = 'y0'
-    nsteps = 1000
-    xarr = np.linspace(0.0, 1.0, nsteps)
-    # Stimulus tables allow you to store sequences of numbers which
-    # are delivered via the 'output' message at each time step. This
-    # is a placeholder and in real scenario you will be using any
-    # sourceFinfo that sends out a double value.
-    input_x = moose.StimulusTable('/xtab')
-    input_x.vector = xarr
-    input_x.startTime = 0.0
-    input_x.stepPosition = xarr[0]
-    input_x.stopTime = simtime
-    moose.connect(input_x, 'output', function.x[0], 'input')
-
-    yarr = np.linspace(-np.pi, np.pi, nsteps)
-    input_y = moose.StimulusTable('/ytab')
-    input_y.vector = yarr
-    input_y.startTime = 0.0
-    input_y.stepPosition = yarr[0]
-    input_y.stopTime = simtime
-    moose.connect(function, 'requestOut', input_y, 'getOutputValue')
-
-    # data recording
-    result = moose.Table('/ztab')
-    moose.connect(result, 'requestOut', function, 'getValue')
-    derivative = moose.Table('/zprime')
-    moose.connect(derivative, 'requestOut', function, 'getDerivative')
-    rate = moose.Table('/dz_by_dt')
-    moose.connect(rate, 'requestOut', function, 'getRate')
-    x_rec = moose.Table('/xrec')
-    moose.connect(x_rec, 'requestOut', input_x, 'getOutputValue')
-    y_rec = moose.Table('/yrec')
-    moose.connect(y_rec, 'requestOut', input_y, 'getOutputValue')
-
-    dt =  simtime/nsteps
-    for ii in range(32):
-        moose.setClock(ii, dt)
-    moose.reinit()
-    moose.start(simtime)
-
-    # Uncomment the following lines and the import matplotlib.pyplot as plt on top
-    # of this file to display the plot.
-    plt.subplot(3,1,1)
-    plt.plot(x_rec.vector, result.vector, 'r-', label='z = {}'.format(function.expr))
-    z = function.c['c0'] * np.exp(function.c['c1'] * xarr) * np.cos(yarr) + np.sin(np.arange(len(xarr)) * dt)
-    plt.plot(xarr, z, 'b--', label='numpy computed')
-    plt.xlabel('x')
-    plt.ylabel('z')
-    plt.legend()
-
-    plt.subplot(3,1,2)
-    plt.plot(y_rec.vector, derivative.vector, 'r-', label='dz/dy0')
-    # derivatives computed by putting x values in the analytical formula
-    dzdy = function.c['c0'] * np.exp(function.c['c1'] * xarr) * (- np.sin(yarr))
-    plt.plot(yarr, dzdy, 'b--', label='numpy computed')
-    plt.xlabel('y')
-    plt.ylabel('dz/dy')
-    plt.legend()
-
-    plt.subplot(3,1,3)
-    # *** BEWARE *** The first two entries are spurious. Entry 0 is
-    # *** from reinit sending out the defaults. Entry 2 is because
-    # *** there is no lastValue for computing real forward difference.
-    plt.plot(np.arange(2, len(rate.vector), 1) * dt, rate.vector[2:], 'r-', label='dz/dt')
-    dzdt = np.diff(z)/dt
-    plt.plot(np.arange(0, len(dzdt), 1.0) * dt, dzdt, 'b--', label='numpy computed')
-    plt.xlabel('t')
-    plt.ylabel('dz/dt')
-    plt.legend()
-    plt.tight_layout()
-    plt.show()
-
-def main():
-    """
-        Function objects can be used to evaluate expressions with arbitrary
-        number of variables and constants. We can assign expression of the
-        form::
-
-            f(c_, c1, ..., cM, x0, x1, ..., xN, y0,..., yP )
-
-        where `ci`'s are constants and `xi`'s and `yi`'s are variables.
-
-        The constants must be defined before setting the expression and
-        variables are connected via messages. The constants can have any
-        name, but the variable names must be of the form x{i} or y{i}
-        where i is increasing integer starting from 0.
-
-        The `xi`'s are field elements and you have to set their number
-        first (function.x.num = N). Then you can connect any source field
-        sending out double to the 'input' destination field of the
-        `x[i]`.
-
-        The `yi`'s are useful when the required variable is a value field
-        and is not available as a source field. In that case you connect
-        the `requestOut` source field of the function element to the
-        `get{Field}` destination field on the target element. The `yi`'s
-        are automatically added on connecting. Thus, if you call::
-
-           moose.connect(function, 'requestOut', a, 'getSomeField')
-           moose.connect(function, 'requestOut', b, 'getSomeField')
-
-        then ``a.someField`` will be assigned to ``y0`` and
-        ``b.someField`` will be assigned to ``y1``.
-
-        In this example we evaluate the expression: ``z = c0 * exp(c1 *
-        x0) * cos(y0)``
-
-        with x0 ranging from -1 to +1 and y0 ranging from -pi to
-        +pi. These values are stored in two stimulus tables called xtab
-        and ytab respectively, so that at each timestep the next values of
-        x0 and y0 are assigned to the function.
-
-        Along with the value of the expression itself we also compute its
-        derivative with respect to y0 and its derivative with respect to
-        time (rate). The former uses a five-point stencil for the
-        numerical differentiation and has a glitch at y=0. The latter uses
-        backward difference divided by dt.
-
-        Unlike Func class, the number of variables and constants are
-        unlimited in Function and you can set all the variables via
-        messages.
-
-    """
-    example()
-
-if __name__ == '__main__':
-    main()
-
-
-
-
-#
-# function.py ends here
diff --git a/moose-examples/snippets/vclamp.py~ b/moose-examples/snippets/vclamp.py~
deleted file mode 100644
index 3ebd20cef9413d85cb69f73ea9f69988ad74f90d..0000000000000000000000000000000000000000
--- a/moose-examples/snippets/vclamp.py~
+++ /dev/null
@@ -1,137 +0,0 @@
-# vclamp.py ---
-#
-# Filename: vclamp.py
-# Description:
-# Author:Subhasis Ray
-# Maintainer:
-# Created: Sat Feb  2 19:16:54 2013 (+0530)
-# Version:
-# Last-Updated: Tue Jun 11 17:35:20 2013 (+0530)
-#           By: subha
-#     Update #: 178
-# URL:
-# Keywords:
-# Compatibility:
-#
-#
-
-# Commentary:
-#
-#
-#
-#
-
-# Change log:
-#
-#
-#
-#
-# This program is free software; you can redistribute it and/or
-# modify it under the terms of the GNU General Public License as
-# published by the Free Software Foundation; either version 3, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-# General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street, Fifth
-# Floor, Boston, MA 02110-1301, USA.
-#
-#
-
-# Code:
-
-import sys
-sys.path.append('../../python')
-import moose
-sys.path.append('../squid')
-from squid import SquidAxon
-from pylab import *
-
-def vclamp_demo(simtime=50.0, dt=1e-2):
-    ## It is good practice to modularize test elements inside a
-    ## container
-    container = moose.Neutral('/vClampDemo')
-    ## Create a compartment with properties of a squid giant axon
-    comp = SquidAxon('/vClampDemo/axon')
-    # Create and setup the voltage clamp object
-    clamp = moose.VClamp('/vClampDemo/vclamp')
-    ## The defaults should work fine
-    # clamp.mode = 2
-    # clamp.tau = 10*dt
-    # clamp.ti = dt
-    # clamp.td = 0
-    # clamp.gain = comp.Cm / dt
-    ## Setup command voltage time course
-    command = moose.PulseGen('/vClampDemo/command')
-    command.delay[0] = 10.0
-    command.width[0] = 20.0
-    command.level[0] = 50.0
-    command.delay[1] = 1e9
-    moose.connect(command, 'output', clamp, 'commandIn')
-    ## Connect the Voltage Clamp to the compartemnt
-    moose.connect(clamp, 'currentOut', comp, 'injectMsg')
-    moose.connect(comp, 'VmOut', clamp, 'sensedIn')
-    ## setup stimulus recroding - this is the command pulse
-    stimtab = moose.Table('/vClampDemo/vclamp_command')
-    moose.connect(stimtab, 'requestOut', command, 'getOutputValue')
-    ## Set up Vm recording
-    vmtab = moose.Table('/vClampDemo/vclamp_Vm')
-    moose.connect(vmtab, 'requestOut', comp, 'getVm')
-    ## setup command potential recording - this is the filtered input
-    ## to PID controller
-    commandtab = moose.Table('/vClampDemo/vclamp_filteredcommand')
-    moose.connect(commandtab, 'requestOut', clamp, 'getCommand')
-    ## setup current recording
-    Imtab = moose.Table('/vClampDemo/vclamp_inject')
-    moose.connect(Imtab, 'requestOut', clamp, 'getCurrent')
-    # Scheduling
-    moose.setClock(0, dt)
-    moose.setClock(1, dt)
-    moose.setClock(2, dt)
-    moose.setClock(3, dt)
-    moose.useClock(0, '%s/##[TYPE=Compartment]' % (container.path), 'init')
-    moose.useClock(0, '%s/##[TYPE=PulseGen]' % (container.path), 'process')
-    moose.useClock(1, '%s/##[TYPE=Compartment]' % (container.path), 'process')
-    moose.useClock(2, '%s/##[TYPE=HHChannel]' % (container.path), 'process')
-    moose.useClock(2, '%s/##[TYPE=VClamp]' % (container.path), 'process')
-    moose.useClock(3, '%s/##[TYPE=Table]' % (container.path), 'process')
-    moose.reinit()
-    print(('RC filter in VClamp:: tau:', clamp.tau))
-    print(('PID controller in VClamp:: ti:', clamp.ti, 'td:', clamp.td, 'gain:', clamp.gain))
-    moose.start(simtime)
-    print(('Finished simulation for %g seconds' % (simtime)))
-    tseries = linspace(0, simtime, len(vmtab.vector))
-    subplot(211)
-    title('Membrane potential and clamp voltage')
-    plot(tseries, vmtab.vector, 'g-', label='Vm (mV)')
-    plot(tseries, commandtab.vector, 'b-', label='Filtered command (mV)')
-    plot(tseries, stimtab.vector, 'r-', label='Command (mV)')
-    xlabel('Time (ms)')
-    ylabel('Voltage (mV)')
-    legend()
-    # print len(commandtab.vector)
-    subplot(212)
-    title('Current through clamp circuit')
-    # plot(tseries, stimtab.vector, label='stimulus (uA)')
-    plot(tseries, Imtab.vector, label='injected current (uA)')
-    xlabel('Time (ms)')
-    ylabel('Current (uA)')
-    legend()
-    show()
-
-def main():
-    """
-    This snippet is to demonstrate modelling of voltage clamping.
-    """
-    vclamp_demo()
-
-if __name__ == '__main__':
-    main()
-
-#
-# vclamp.py ends here