diff --git a/.gitignore b/.gitignore index f315f45899cd3be336c0d6c26cd766bc6e6d5a33..73346d4b3ea9405ee6dc8d852a57b261ff81e7f1 100644 --- a/.gitignore +++ b/.gitignore @@ -5,4 +5,4 @@ src/lib/__pycache__/ src/lib/autogrid_reference_files/ src/lib/autogrids/ .ipynb_checkpoints/ - +debugging.txt diff --git a/src/lib/pathways/Gi.py b/src/lib/pathways/Gi.py index 15519753edbd1b6df0a3a70d11c625220daf54d5..00bb42e4a3a6f5313237d9266e8c7d36d0f0c3a6 100644 --- a/src/lib/pathways/Gi.py +++ b/src/lib/pathways/Gi.py @@ -18,79 +18,87 @@ from pysb.macros import * from pysb.macros import create_t_obs, drug_binding from sympy import Piecewise - +defaultParameters = { + 'time_in':0, + 'time_out':0, + 'L_init':0.01, + 'R_init': 2, + 'Gi_init': 3, + 'AC5_init': 0.7, + 'Ca_cytos_free': 0.06, + 'ATP_init': 5000, + 'PDE4_init': 2, + 'PDE10_init': 1, + 'PKA_init': 1.2, + 'RL_kon':0.1*1E3, + 'RL_koff':200, + 'RL_Gi_kon':6.6*1E3, + 'RL_Gi_koff':200, + 'RL_Gi_decay': 60, + 'GaiGTP_decay': 30, + 'Gi_formation': 100, + 'AC5_ATP_kon': 0.0001*1E3, + 'AC5_ATP_koff': 1, + 'AC5_basal': 1, + 'AC5_reverse_basal': 0.0004, + 'AC5_Ca_kon': 0.001*1E3, + 'AC5_Ca_koff': 0.9, + 'AC5_Ca_ATP_kon': 7.50E-5*1E3, + 'AC5_Ca_ATP_koff': 1, + 'AC5_Ca_ATP_to_cAMP': 0.5, + 'AC5_Ca_ATP_to_cAMP_reverse': 0.00015, + 'AC5_ATP_Ca_kon': 0.001*1E3, + 'AC5_ATP_Ca_koff': 0.9, + 'AC5_GaiGTP_kon': 50*1E3, + 'AC5_GaiGTP_koff': 5, + 'AC5_GaiGTP_ATP_kon': 6.25E-5*1E3, + 'AC5_GaiGTP_ATP_koff': 1, + 'AC5_ATP_GaiGTP_kon': 50*1E3, + 'AC5_ATP_GaiGTP_koff': 5, + 'AC5_GaiGTP_ATP_to_cAMP': 0.25, + 'AC5_GaiGTP_ATP_to_cAMP_reverse': 0.00105, + 'AC5_GaiGTP_decay': 30, + 'AC5_GaiGTP_decay_koff': 30, + 'AC5_Ca_GaiGTP_kon': 50*1E3, + 'AC5_Ca_GaiGTP_koff': 5, + 'AC5_Ca_GaiGTP_ATP_kon': 5.63E-5*1E3, + 'AC5_Ca_GaiGTP_ATP_koff': 1, + 'AC5_Ca_ATP_GaiGTP_kon': 50*1E3, + 'AC5_Ca_ATP_GaiGTP_koff': 5, + 'AC5_Ca_GaiGTP_ATP_to_cAMP': 0.125, + 'AC5_Ca_GaiGTP_ATP_to_cAMP_reverse': 2.81E-5, + 'AC5_Ca_GaiGTP_decay': 30, + 'AC5_Ca_GaiGTP_ATP_decay': 30, + 'PDE4_cAMP_kon': 0.01*1E3, + 'PDE4_cAMP_koff': 1, + 'PDE4_cAMP_to_AMP': 2, + 'PDE10_2cAMP_kon': 1.0E-6*1E3, + 'PDE10_2cAMP_koff': 9, + 'PDE10_cAMP_kon': 0.1*1E3, + 'PDE10_cAMP_koff': 2, + 'PDE10_2cAMP_cAMP_kon': 0.13*1E3, + 'PDE10_2cAMP_cAMP_koff': 2, + 'PDE10_cAMP_decay': 3, + 'PDE10_2cAMP_cAMP_decay': 10, + 'PKA_cAMP2_kon': 0.00026*1E3, + 'PKA_cAMP2_koff': 1, + 'PKA_cAMP4_kon': 0.000346*1E3, + 'PKA_cAMP4_koff': 1, + 'PKA_activation': 10*1E3, + 'PKA_activation_reverse': 0.025 +} def network(LR=None, kinetics=True, **kwargs): - defaultKwargs = { - 'time_in':0, - 'time_out':0, - 'L_init':0.01, - 'R_init': 2, - 'Gi_init': 3, - 'AC5_init': 0.7, - 'Ca_cytos_free': 0.06, - 'ATP_init': 5000, - 'PDE4_init': 2, - 'PDE10_init': 1, - 'PKA_init': 1.2, - 'RL_kon':0.1*1E3, - 'RL_koff':200, - 'RL_Gi_kon':6.6*1E3, - 'RL_Gi_koff':200, - 'RL_Gi_decay': 60, - 'GaiGTP_decay': 30, - 'Gi_formation': 100, - 'AC5_ATP_kon': 0.0001*1E3, - 'AC5_ATP_koff': 1, - 'AC5_basal': 1, - 'AC5_reverse_basal': 0.0004, - 'AC5_Ca_kon': 0.001*1E3, - 'AC5_Ca_koff': 0.9, - 'AC5_Ca_ATP_kon': 7.50E-5*1E3, - 'AC5_Ca_ATP_koff': 1, - 'AC5_Ca_ATP_to_cAMP': 0.5, - 'AC5_Ca_ATP_to_cAMP_reverse': 0.00015, - 'AC5_ATP_Ca_kon': 0.001*1E3, - 'AC5_ATP_Ca_koff': 0.9, - 'AC5_GaiGTP_kon': 50*1E3, - 'AC5_GaiGTP_koff': 5, - 'AC5_GaiGTP_ATP_kon': 6.25E-5*1E3, - 'AC5_GaiGTP_ATP_koff': 1, - 'AC5_ATP_GaiGTP_kon': 50*1E3, - 'AC5_ATP_GaiGTP_koff': 5, - 'AC5_GaiGTP_ATP_to_cAMP': 0.25, - 'AC5_GaiGTP_ATP_to_cAMP_reverse': 0.00105, - 'AC5_GaiGTP_decay': 30, - 'AC5_GaiGTP_decay_koff': 30, - 'AC5_Ca_GaiGTP_kon': 50*1E3, - 'AC5_Ca_GaiGTP_koff': 5, - 'AC5_Ca_GaiGTP_ATP_kon': 5.63E-5*1E3, - 'AC5_Ca_GaiGTP_ATP_koff': 1, - 'AC5_Ca_ATP_GaiGTP_kon': 50*1E3, - 'AC5_Ca_ATP_GaiGTP_koff': 5, - 'AC5_Ca_GaiGTP_ATP_to_cAMP': 0.125, - 'AC5_Ca_GaiGTP_ATP_to_cAMP_reverse': 2.81E-5, - 'AC5_Ca_GaiGTP_decay': 30, - 'AC5_Ca_GaiGTP_ATP_decay': 30, - 'PDE4_cAMP_kon': 0.01*1E3, - 'PDE4_cAMP_koff': 1, - 'PDE4_cAMP_to_AMP': 2, - 'PDE10_2cAMP_kon': 1.0E-6*1E3, - 'PDE10_2cAMP_koff': 9, - 'PDE10_cAMP_kon': 0.1*1E3, - 'PDE10_cAMP_koff': 2, - 'PDE10_2cAMP_cAMP_kon': 0.13*1E3, - 'PDE10_2cAMP_cAMP_koff': 2, - 'PDE10_cAMP_decay': 3, - 'PDE10_2cAMP_cAMP_decay': 10, - 'PKA_cAMP2_kon': 0.00026*1E3, - 'PKA_cAMP2_koff': 1, - 'PKA_cAMP4_kon': 0.000346*1E3, - 'PKA_cAMP4_koff': 1, - 'PKA_activation': 10*1E3, - 'PKA_activation_reverse': 0.025 - } - parameters={**defaultKwargs, **kwargs} + + parameters={**defaultParameters, **kwargs} + def myeval(x): + try: + y = eval(x) + except: + y=x + return y + + parameters = dict(zip(parameters.keys(), map(myeval, parameters.values()))) #Start a model Model() diff --git a/src/lib/pathways/Gq.py b/src/lib/pathways/Gq.py index ea4c9585fb8a38c7cabb4cb4784c5e8f34b0ff95..e3f15b51a79f685a36151210bae8744abf98fc1a 100644 --- a/src/lib/pathways/Gq.py +++ b/src/lib/pathways/Gq.py @@ -31,10 +31,7 @@ __email__ = "rui.ribeiro@univr.it" __status__ = "Production" USAGE = __doc__.format(__author__, __email__) - -def network(LR=None, kinetics=True, **kwargs): - - defaultKwargs = { +defaultParameters = { 'time_in':0, 'time_out':0, 'L_init':0, @@ -76,7 +73,17 @@ def network(LR=None, kinetics=True, **kwargs): 'DAG_decay':0.15, } - parameters={**defaultKwargs, **kwargs} +def network(LR=None, kinetics=True, **kwargs): + + parameters={**defaultParameters, **kwargs} + def myeval(x): + try: + y = eval(x) + except: + y=x + return y + + parameters = dict(zip(parameters.keys(), map(myeval, parameters.values()))) #Start a model Model() diff --git a/src/lib/pathways/Gs.py b/src/lib/pathways/Gs.py index 2f23250ff0b91b4b49e159488c66a07526f46f0f..c1e2af0da6cbd165bf1785f35ca8afcac1b240f5 100644 --- a/src/lib/pathways/Gs.py +++ b/src/lib/pathways/Gs.py @@ -19,10 +19,7 @@ from pysb.macros import * from sympy import Piecewise from pysb.macros import create_t_obs, drug_binding - -def network(LR=None, kinetics=True, **kwargs): - - defaultKwargs = { +defaultParameters = { 'time_in':0, 'time_out':0, 'L_init':0.01, @@ -91,8 +88,21 @@ def network(LR=None, kinetics=True, **kwargs): 'PKA_activation': 10*1E3, 'PKA_activation_reverse': 0.01 } - parameters={**defaultKwargs, **kwargs} + +def network(LR=None, kinetics=True, **kwargs): + + parameters={**defaultParameters, **kwargs} + def myeval(x): + try: + y = eval(x) + except: + y=x + return y + + parameters = dict(zip(parameters.keys(), map(myeval, parameters.values()))) + + #Start a model Model() diff --git a/src/lib/pathways/__pycache__/Gs.cpython-39.pyc b/src/lib/pathways/__pycache__/Gs.cpython-39.pyc index 5a2fd0988d52e19212fe139ec90a2fdf3167f03d..f2526a339a1f76d36c791c488a40bd6551e3282a 100644 Binary files a/src/lib/pathways/__pycache__/Gs.cpython-39.pyc and b/src/lib/pathways/__pycache__/Gs.cpython-39.pyc differ