"""Create workflow for calculating load based on atlas maps and segmentations""" import struct import matplotlib.pyplot as plt import pandas as pd import cv2 import numpy as np #from read_and_write import flat_to_array, label_to_array from counting_and_load import flat_to_dataframe base = r"../test_data/tTA_2877_NOP_s037_atlasmap/2877_NOP_tTA_lacZ_Xgal_s037_nl.flat" label = r"../annotation_volumes\allen2017_colours.csv" ##optional seg = r"../test_data/tTA_2877_NOP_s037_seg/2877_NOP_tTA_lacZ_Xgal_resize_Simple_Seg_s037.png" segim = cv2.imread(seg) #the indexing [:2] means the first two values and [::-1] means reverse the list segXY = segim.shape[:2][::-1] #image_arr = flat_to_array(base, label) #plt.imshow(flat_to_array(base, label)) df_area_per_label = flat_to_dataframe(base, label, segXY) """count pixels in np array for unique idx, return pd df""" #unique_ids, counts = np.unique(allen_id_image, return_counts=True) #area_per_label = list(zip(unique_ids, counts)) # create a list of unique regions and pixel counts per region #df_area_per_label = pd.DataFrame(area_per_label, columns=["idx", "area_count"]) # create a pandas df with regions and pixel counts """add region name and colours corresponding to each idx into dataframe. This could be a separate function""" df_label_colours = pd.read_csv(label, sep=",") # find colours corresponding to each region ID and add to the pandas dataframe # look up name, r, g, b in df_allen_colours in df_area_per_label based on "idx" new_rows = [] for index, row in df_area_per_label.iterrows(): mask = df_label_colours["idx"] == row["idx"] current_region_row = df_label_colours[mask] current_region_name = current_region_row["name"].values current_region_red = current_region_row["r"].values current_region_green = current_region_row["g"].values current_region_blue = current_region_row["b"].values row["name"] = current_region_name[0] row["r"] = current_region_red[0] row["g"] = current_region_green[0] row["b"] = current_region_blue[0] new_rows.append(row) df_area_per_label_name = pd.DataFrame(new_rows) print(df_area_per_label_name) df_area_per_label_name.to_csv( "../outputs/NOP_s037_regionareas.csv", sep=";", na_rep="", index=False ) # Count area per unique label in one flat file - done. # Scale up to size of corresponding segmentation/ or size of reference atlas if points are already scaled? # divide "segmentation value per idx per slice" by "area per idx per slice" # also do for whole brain - need to loop through and match up section with corresponding atlasmap # output reports per brain and per slice