From ef46b82590ccd3a7ea12201edbdd2426bbf0ccb4 Mon Sep 17 00:00:00 2001 From: sharoncy <s.c.yates@medisin.uio.no> Date: Tue, 9 May 2023 10:24:10 +0200 Subject: [PATCH] Delete folder_of_segmentations_to_meshview_sharon_comments.py --- ...gmentations_to_meshview_sharon_comments.py | 94 ------------------- 1 file changed, 94 deletions(-) delete mode 100644 PyNutil/folder_of_segmentations_to_meshview_sharon_comments.py diff --git a/PyNutil/folder_of_segmentations_to_meshview_sharon_comments.py b/PyNutil/folder_of_segmentations_to_meshview_sharon_comments.py deleted file mode 100644 index f74da47..0000000 --- a/PyNutil/folder_of_segmentations_to_meshview_sharon_comments.py +++ /dev/null @@ -1,94 +0,0 @@ - -#pandas is used for working with csv files -import pandas as pd -#nrrd just lets us open nrrd files -import nrrd -import numpy as np -import csv - -from datetime import datetime - -#import our function for converting a folder of segmentations to points -from PyNutil import FolderToAtlasSpace, labelPoints, WritePointsToMeshview - -volume_path = "../annotation_volumes//annotation_10_reoriented.nrrd" -data, header = nrrd.read(volume_path) - -startTime = datetime.now() - -segmentation_folder = "../test_data/tTA_2877_NOP/" -alignment_json = "../test_data/tTA_2877_NOP_horizontal_final_2017.json" -#now we can use our function to convert the folder of segmentations to points -# colour is BGR (not RGB) -points = FolderToAtlasSpace(segmentation_folder,alignment_json, pixelID=[0, 0, 255], nonLinear=True) -#first we need to find the label file for the volume -label_path = "../annotation_volumes//allen2022_colours.csv" -#then the path to the volume - -#read the label files -label_df = pd.read_csv(label_path) -#read the annotation volume, it also has a header but we don't need it -#now we can get the labels for each point -labels = labelPoints(points, data, scale_factor=2.5) -#save points to a meshview json -WritePointsToMeshview(points, labels,"../outputs/points.json", label_df) - -#Task: -# Make a pandas dataframe -# Column 1: counted_labels -# Column 2: label_counts -# Column 3: region_name (look up by reading Allen2022_colours.csv, look up name and RGB) -# Save dataframe in output as CSV -# next task is to create functions from this. -counted_labels, label_counts = np.unique(labels, return_counts=True) -counts_per_label = list(zip(counted_labels,label_counts)) - -df_counts_per_label = pd.DataFrame(counts_per_label, columns=["allenID","pixel count"]) - -allen_colours = "../annotation_volumes//allen2022_colours.csv" - -df_allen_colours =pd.read_csv(allen_colours, sep=",") -df_allen_colours - -#look up name, r, g, b in df_allen_colours in df_counts_per_label based on "allenID" -new_rows = [] -for index, row in df_counts_per_label.iterrows(): - mask = df_allen_colours["allenID"] == row["allenID"] - current_region_row = df_allen_colours[mask] - current_region_name = current_region_row["name"].values - current_region_red = current_region_row["r"].values - current_region_green = current_region_row["g"].values - current_region_blue = current_region_row["b"].values - - row["name"] = current_region_name[0] - row["r"] = current_region_red[0] - row["g"] = current_region_green[0] - row["b"] = current_region_blue[0] - - new_rows.append(row) - -df_counts_per_label_name = pd.DataFrame(new_rows) -#df_counts_per_label_name - -# write to csv file -df_counts_per_label_name.to_csv("../outputs/counts_per_allenID.csv", sep=";", na_rep='', index= False) - -#r = df_allen_colours["r"] -#g = df_allen_colours["g"] -#b = df_allen_colours["b"] -#region_name = df_allen_colours["name"] - -#while we havent added it here it would be good to next quantify the number of cells for each label. - -time_taken = datetime.now() - startTime - -print(f"time taken was: {time_taken}") - - -#get centroids and areas returns a list of objects and the center coordinate. - -#we need to deform the center coordinate according to visualign deformations¨ - -#we need to then transform the coordinate into atlas space - -#and then save labels like before. \ No newline at end of file -- GitLab