diff --git a/PyNutil/io/propagation.py b/PyNutil/io/propagation.py
index 22a611fe44b7ee85384cc70a56dcc942154ea5cd..600ad6033c5b296b17a6037a183ac15b14d160bb 100644
--- a/PyNutil/io/propagation.py
+++ b/PyNutil/io/propagation.py
@@ -1,5 +1,6 @@
 import math, re
 
+
 def propagate(arr):
     arr = arr.copy()
     for slice in arr:
diff --git a/PyNutil/io/reconstruct_dzi.py b/PyNutil/io/reconstruct_dzi.py
index 862c2ec55078ed9e0ddbcdfc8f96f48a07ad476b..bbdff4038d0577d2d0fba447d657af634627801f 100644
--- a/PyNutil/io/reconstruct_dzi.py
+++ b/PyNutil/io/reconstruct_dzi.py
@@ -4,6 +4,7 @@ import os
 import zipfile
 import xmltodict
 
+
 def reconstruct_dzi(zip_file_path):
     """
     Reconstructs a Deep Zoom Image (DZI) from a zip file containing the tiles.
diff --git a/PyNutil/main.py b/PyNutil/main.py
index 8522cea0c6d5d2e999c3d0c19676ab719d57ee26..3642a72d5a1e98f84e6dfc1828dd4ebe65ec667d 100644
--- a/PyNutil/main.py
+++ b/PyNutil/main.py
@@ -1,10 +1,15 @@
 import json
 from .io.atlas_loader import load_atlas_data, load_custom_atlas
-from .processing.data_analysis import quantify_labeled_points, map_to_custom_regions, apply_custom_regions
+from .processing.data_analysis import (
+    quantify_labeled_points,
+    map_to_custom_regions,
+    apply_custom_regions,
+)
 from .io.file_operations import save_analysis_output
 from .io.read_and_write import open_custom_region_file
 from .processing.coordinate_extraction import folder_to_atlas_space
 
+
 class PyNutil:
     """
     A class used to perform brain-wide quantification and spatial analysis of features in serial section images.
@@ -150,7 +155,7 @@ class PyNutil:
                 self.centroids_len,
                 self.segmentation_filenames,
                 self.per_point_undamaged,
-                self.per_centroid_undamaged
+                self.per_centroid_undamaged,
             ) = folder_to_atlas_space(
                 self.segmentation_folder,
                 self.alignment_json,
@@ -201,7 +206,7 @@ class PyNutil:
                 self.centroids_labels,
                 self.atlas_labels,
                 self.per_point_undamaged,
-                self.per_centroid_undamaged
+                self.per_centroid_undamaged,
             )
             if self.custom_regions_dict is not None:
                 self.custom_label_df, self.label_df = apply_custom_regions(
diff --git a/PyNutil/processing/coordinate_extraction.py b/PyNutil/processing/coordinate_extraction.py
index ddf569eb565e14624d939792c89b9122ca43d878..f6d26c2bfdd6f8aa7773f6df3f7b2519d3effd63 100644
--- a/PyNutil/processing/coordinate_extraction.py
+++ b/PyNutil/processing/coordinate_extraction.py
@@ -43,15 +43,17 @@ def get_centroids_and_area(segmentation, pixel_cut_off=0):
     coords = np.array([label.coords for label in labels_info], dtype=object)
     return centroids, area, coords
 
+
 def update_spacing(anchoring, width, height, grid_spacing):
     if len(anchoring) != 9:
         print("Anchoring does not have 9 elements.")
-    ow = np.sqrt(sum([anchoring[i+3] ** 2 for i in range(3)]))
-    oh = np.sqrt(sum([anchoring[i+6] ** 2 for i in range(3)]))
+    ow = np.sqrt(sum([anchoring[i + 3] ** 2 for i in range(3)]))
+    oh = np.sqrt(sum([anchoring[i + 6] ** 2 for i in range(3)]))
     xspacing = int(width * grid_spacing / ow)
     yspacing = int(height * grid_spacing / oh)
     return xspacing, yspacing
 
+
 def create_damage_mask(section, grid_spacing):
     width = section["width"]
     height = section["height"]
@@ -65,7 +67,10 @@ def create_damage_mask(section, grid_spacing):
     y_coords = np.arange(gridy, height, yspacing)
 
     num_markers = len(grid_values)
-    markers = [(x_coords[i % len(x_coords)], y_coords[i // len(x_coords)]) for i in range(num_markers)]
+    markers = [
+        (x_coords[i % len(x_coords)], y_coords[i // len(x_coords)])
+        for i in range(num_markers)
+    ]
 
     binary_image = np.ones((len(y_coords), len(x_coords)), dtype=int)
 
@@ -75,6 +80,7 @@ def create_damage_mask(section, grid_spacing):
 
     return binary_image
 
+
 def folder_to_atlas_space(
     folder,
     quint_alignment,
@@ -104,9 +110,15 @@ def folder_to_atlas_space(
     slices, gridspacing = load_visualign_json(quint_alignment)
     segmentations = get_segmentations(folder)
     flat_files, flat_file_nrs = get_flat_files(folder, use_flat)
-    points_list, centroids_list, region_areas_list, centroids_labels, points_labels,per_point_undamaged_list,per_centroid_undamaged_list  = (
-        initialize_lists(len(segmentations))
-    )
+    (
+        points_list,
+        centroids_list,
+        region_areas_list,
+        centroids_labels,
+        points_labels,
+        per_point_undamaged_list,
+        per_centroid_undamaged_list,
+    ) = initialize_lists(len(segmentations))
     threads = create_threads(
         segmentations,
         slices,
@@ -125,11 +137,25 @@ def folder_to_atlas_space(
         object_cutoff,
         atlas_volume,
         use_flat,
-        gridspacing
+        gridspacing,
     )
     start_and_join_threads(threads)
-    points, centroids, points_labels, centroids_labels, points_len, centroids_len, per_point_undamaged_list, per_centroid_undamaged_list = (
-        process_results(points_list, centroids_list, points_labels, centroids_labels, per_point_undamaged_list, per_centroid_undamaged_list)
+    (
+        points,
+        centroids,
+        points_labels,
+        centroids_labels,
+        points_len,
+        centroids_len,
+        per_point_undamaged_list,
+        per_centroid_undamaged_list,
+    ) = process_results(
+        points_list,
+        centroids_list,
+        points_labels,
+        centroids_labels,
+        per_point_undamaged_list,
+        per_centroid_undamaged_list,
     )
     return (
         points,
@@ -141,7 +167,7 @@ def folder_to_atlas_space(
         centroids_len,
         segmentations,
         per_point_undamaged_list,
-        per_centroid_undamaged_list
+        per_centroid_undamaged_list,
     )
 
 
@@ -183,7 +209,7 @@ def initialize_lists(length):
         centroids_labels,
         points_labels,
         per_point_undamaged_list,
-        per_centroid_undamaged_list
+        per_centroid_undamaged_list,
     )
 
 
@@ -205,7 +231,7 @@ def create_threads(
     object_cutoff,
     atlas_volume,
     use_flat,
-    gridspacing
+    gridspacing,
 ):
     """
     Creates threads for processing segmentations.
@@ -261,7 +287,7 @@ def create_threads(
                 object_cutoff,
                 atlas_volume,
                 use_flat,
-                gridspacing
+                gridspacing,
             ),
         )
         threads.append(x)
@@ -309,7 +335,7 @@ def get_region_areas(
     slice_dict,
     atlas_volume,
     triangulation,
-    damage_mask
+    damage_mask,
 ):
     """
     Gets the region areas.
@@ -327,11 +353,16 @@ def get_region_areas(
     Returns:
         DataFrame: DataFrame with region areas.
     """
-    atlas_map = load_image(flat_file_atlas,slice_dict["anchoring"], atlas_volume, triangulation, (seg_width, seg_height), atlas_labels)
-
-    region_areas = flat_to_dataframe(
-        atlas_map, damage_mask, (seg_width, seg_height)
+    atlas_map = load_image(
+        flat_file_atlas,
+        slice_dict["anchoring"],
+        atlas_volume,
+        triangulation,
+        (seg_width, seg_height),
+        atlas_labels,
     )
+
+    region_areas = flat_to_dataframe(atlas_map, damage_mask, (seg_width, seg_height))
     return region_areas, atlas_map
 
 
@@ -392,7 +423,7 @@ def segmentation_to_atlas_space(
         slice_dict,
         atlas_volume,
         triangulation,
-        damage_mask
+        damage_mask,
     )
     atlas_map = rescale_image(atlas_map, (reg_width, reg_height))
     y_scale, x_scale = transform_to_registration(
@@ -411,16 +442,21 @@ def segmentation_to_atlas_space(
         np.round(scaled_centroidsX).astype(int), np.round(scaled_centroidsY).astype(int)
     ]
     if damage_mask is not None:
-        damage_mask = cv2.resize(damage_mask.astype(np.uint8), (atlas_map.shape[::-1]), interpolation=cv2.INTER_NEAREST).astype(bool)
+        damage_mask = cv2.resize(
+            damage_mask.astype(np.uint8),
+            (atlas_map.shape[::-1]),
+            interpolation=cv2.INTER_NEAREST,
+        ).astype(bool)
         per_point_undamaged = damage_mask[
-                np.round(scaled_x).astype(int), np.round(scaled_y).astype(int)
-            ]
+            np.round(scaled_x).astype(int), np.round(scaled_y).astype(int)
+        ]
         per_centroid_undamaged = damage_mask[
-            np.round(scaled_centroidsX).astype(int), np.round(scaled_centroidsY).astype(int)
-            ]
+            np.round(scaled_centroidsX).astype(int),
+            np.round(scaled_centroidsY).astype(int),
+        ]
     else:
         per_point_undamaged = np.ones(scaled_x.shape, dtype=bool)
-        per_centroid_undamaged =  np.ones(scaled_centroidsX.shape, dtype=bool)
+        per_centroid_undamaged = np.ones(scaled_centroidsX.shape, dtype=bool)
     per_point_labels = per_point_labels[per_point_undamaged]
     per_centroid_labels = per_centroid_labels[per_centroid_undamaged]
     new_x, new_y, centroids_new_x, centroids_new_y = get_transformed_coordinates(
@@ -451,7 +487,9 @@ def segmentation_to_atlas_space(
         per_centroid_undamaged if centroids is not None else []
     )
     points_labels[index] = np.array(per_point_labels if points is not None else [])
-    per_point_undamaged_list[index] = np.array(per_point_undamaged if points is not None else [])
+    per_point_undamaged_list[index] = np.array(
+        per_point_undamaged if points is not None else []
+    )
 
 
 def get_triangulation(slice_dict, reg_width, reg_height, non_linear):
diff --git a/PyNutil/processing/counting_and_load.py b/PyNutil/processing/counting_and_load.py
index da1fce6f65091054f932022d4620b6c5ba45fe24..0b549e6a4037cdb5ebe0e0e021d969376c47b8a1 100644
--- a/PyNutil/processing/counting_and_load.py
+++ b/PyNutil/processing/counting_and_load.py
@@ -5,6 +5,7 @@ import cv2
 from .generate_target_slice import generate_target_slice
 from .visualign_deformations import transform_vec
 
+
 # related to counting and load
 def label_points(points, label_volume, scale_factor=1):
     """
@@ -49,7 +50,11 @@ def label_points(points, label_volume, scale_factor=1):
 
 # related to counting_and_load
 def pixel_count_per_region(
-    labels_dict_points, labeled_dict_centroids, current_points_undamaged, current_centroids_undamaged, df_label_colours
+    labels_dict_points,
+    labeled_dict_centroids,
+    current_points_undamaged,
+    current_centroids_undamaged,
+    df_label_colours,
 ):
     """
     Counts the number of pixels per region and writes to a DataFrame.
@@ -77,75 +82,59 @@ def pixel_count_per_region(
     # Which regions have pixels, and how many pixels are there per region
     # Create a list of unique regions and pixel counts per region
     counts_per_label = {
-        "idx" : [],
-        "name" : [],
-        "r" : [],
-        "g" : [],
-        "b" : [],
-        "pixel_count" : [],
-        "undamaged_pixel_count" : [],
-        "damaged_pixel_counts" : [],
-        "object_count" : [],
-        "undamaged_object_count" : [],
-        "damaged_object_count" : [],
-        }
+        "idx": [],
+        "name": [],
+        "r": [],
+        "g": [],
+        "b": [],
+        "pixel_count": [],
+        "undamaged_pixel_count": [],
+        "damaged_pixel_counts": [],
+        "object_count": [],
+        "undamaged_object_count": [],
+        "damaged_object_count": [],
+    }
     for index, row in df_label_colours.iterrows():
         if row["idx"] in counted_labels_points_undamaged:
-            clpu = label_counts_points_undamaged[counted_labels_points_undamaged == row["idx"]][0]
+            clpu = label_counts_points_undamaged[
+                counted_labels_points_undamaged == row["idx"]
+            ][0]
         else:
             clpu = 0
         if row["idx"] in counted_labels_points_damaged:
-            clpd = label_counts_points_damaged[counted_labels_points_damaged == row["idx"]][0]
+            clpd = label_counts_points_damaged[
+                counted_labels_points_damaged == row["idx"]
+            ][0]
         else:
             clpd = 0
         if row["idx"] in counted_labels_centroids_undamaged:
-            clcu = counted_labels_centroids_undamaged[counted_labels_centroids_undamaged == row["idx"]][0]
+            clcu = counted_labels_centroids_undamaged[
+                counted_labels_centroids_undamaged == row["idx"]
+            ][0]
         else:
             clcu = 0
         if row["idx"] in counted_labels_centroids_damaged:
-            clcd = counted_labels_centroids_damaged[counted_labels_centroids_damaged == row["idx"]][0]
+            clcd = counted_labels_centroids_damaged[
+                counted_labels_centroids_damaged == row["idx"]
+            ][0]
         else:
             clcd = 0
-        if clcd==clcu==clpd==clpu==0:
+        if clcd == clcu == clpd == clpu == 0:
             continue
 
-        counts_per_label["idx"].append(
-            row["idx"]
-        )
-        counts_per_label["name"].append(
-            row["name"]
-        )
-        counts_per_label["r"].append(
-            int(row["r"])
-        )
-        counts_per_label["g"].append(
-            int(row["g"])
-        )
-        counts_per_label["b"].append(
-            int(row["b"])
-        )
-        counts_per_label["pixel_count"].append(
-            clpu + clpd
-        )
-        counts_per_label["undamaged_pixel_count"].append(
-            clpu
-        )
-        counts_per_label["damaged_pixel_counts"].append(
-            clpd
-        )
-        counts_per_label["object_count"].append(
-            clcu + clcd
-        )
-        counts_per_label["undamaged_object_count"].append(
-            clcu
-        )
-        counts_per_label["damaged_object_count"].append(
-            clcd
-        )
-
-    df_counts_per_label = pd.DataFrame(
-        counts_per_label
-    )
+        counts_per_label["idx"].append(row["idx"])
+        counts_per_label["name"].append(row["name"])
+        counts_per_label["r"].append(int(row["r"]))
+        counts_per_label["g"].append(int(row["g"]))
+        counts_per_label["b"].append(int(row["b"]))
+        counts_per_label["pixel_count"].append(clpu + clpd)
+        counts_per_label["undamaged_pixel_count"].append(clpu)
+        counts_per_label["damaged_pixel_counts"].append(clpd)
+        counts_per_label["object_count"].append(clcu + clcd)
+        counts_per_label["undamaged_object_count"].append(clcu)
+        counts_per_label["damaged_object_count"].append(clcd)
+
+    df_counts_per_label = pd.DataFrame(counts_per_label)
     return df_counts_per_label
 
 
@@ -311,10 +300,7 @@ def warp_image(image, triangulation, rescaleXY):
     return new_image
 
 
-def flat_to_dataframe(
-    image,
-    damage_mask,
-    rescaleXY=None):
+def flat_to_dataframe(image, damage_mask, rescaleXY=None):
     """
     Converts a flat file to a DataFrame.
 
@@ -332,13 +318,33 @@ def flat_to_dataframe(
     """
     scale_factor = calculate_scale_factor(image, rescaleXY)
     if damage_mask is not None:
-        damage_mask = cv2.resize(damage_mask.astype(np.uint8), (image.shape[::-1]), interpolation=cv2.INTER_NEAREST).astype(bool)
-        undamaged_df_area_per_label = count_pixels_per_label(image[damage_mask], scale_factor)
-        damaged_df_area_per_label = count_pixels_per_label(image[~damage_mask], scale_factor)
-        undamaged_df_area_per_label = undamaged_df_area_per_label.rename(columns={"region_area": "undamaged_region_area"})
-        damaged_df_area_per_label = damaged_df_area_per_label.rename(columns={"region_area": "damaged_region_area"})
-        df_area_per_label = pd.merge(undamaged_df_area_per_label, damaged_df_area_per_label, on='idx', how='outer').fillna(0)
-        df_area_per_label["region_area"] = df_area_per_label["undamaged_region_area"] + df_area_per_label["damaged_region_area"]
+        damage_mask = cv2.resize(
+            damage_mask.astype(np.uint8),
+            (image.shape[::-1]),
+            interpolation=cv2.INTER_NEAREST,
+        ).astype(bool)
+        undamaged_df_area_per_label = count_pixels_per_label(
+            image[damage_mask], scale_factor
+        )
+        damaged_df_area_per_label = count_pixels_per_label(
+            image[~damage_mask], scale_factor
+        )
+        undamaged_df_area_per_label = undamaged_df_area_per_label.rename(
+            columns={"region_area": "undamaged_region_area"}
+        )
+        damaged_df_area_per_label = damaged_df_area_per_label.rename(
+            columns={"region_area": "damaged_region_area"}
+        )
+        df_area_per_label = pd.merge(
+            undamaged_df_area_per_label,
+            damaged_df_area_per_label,
+            on="idx",
+            how="outer",
+        ).fillna(0)
+        df_area_per_label["region_area"] = (
+            df_area_per_label["undamaged_region_area"]
+            + df_area_per_label["damaged_region_area"]
+        )
     else:
         df_area_per_label = count_pixels_per_label(image, scale_factor)
         df_area_per_label["undamaged_region_area"] = df_area_per_label["region_area"]
diff --git a/PyNutil/processing/data_analysis.py b/PyNutil/processing/data_analysis.py
index 64cadce6b9942512fdd0a3366b7e61719637532e..dc7816afdebc3dcc2c3972145ee9025206d8ef30 100644
--- a/PyNutil/processing/data_analysis.py
+++ b/PyNutil/processing/data_analysis.py
@@ -2,6 +2,7 @@ import pandas as pd
 from .counting_and_load import pixel_count_per_region
 import numpy as np
 
+
 def map_to_custom_regions(custom_regions_dict, points_labels):
     custom_points_labels = np.zeros_like(points_labels)
     for i in np.unique(points_labels):
@@ -74,7 +75,9 @@ def apply_custom_regions(df, custom_regions_dict):
     grouped_df = grouped_df.rename(columns={"custom_region_name": "name"})
 
     grouped_df["area_fraction"] = grouped_df["pixel_count"] / grouped_df["region_area"]
-    grouped_df["undamaged_area_fraction"] = grouped_df["undamaged_pixel_count"] / grouped_df["undamaged_region_area"]
+    grouped_df["undamaged_area_fraction"] = (
+        grouped_df["undamaged_pixel_count"] / grouped_df["undamaged_region_area"]
+    )
     common_columns = [col for col in df.columns if col in grouped_df.columns]
     grouped_df = grouped_df.reindex(
         columns=common_columns
@@ -82,6 +85,7 @@ def apply_custom_regions(df, custom_regions_dict):
     )
     return grouped_df, df
 
+
 def quantify_labeled_points(
     points_len,
     centroids_len,
@@ -90,7 +94,7 @@ def quantify_labeled_points(
     labeled_points_centroids,
     atlas_labels,
     per_point_undamaged,
-    per_centroid_undamaged
+    per_centroid_undamaged,
 ):
     """
     Quantifies labeled points and returns various DataFrames.
@@ -118,7 +122,7 @@ def quantify_labeled_points(
         region_areas_list,
         atlas_labels,
         per_point_undamaged,
-        per_centroid_undamaged
+        per_centroid_undamaged,
     )
     label_df = _combine_slice_reports(per_section_df, atlas_labels)
 
@@ -133,7 +137,7 @@ def _quantify_per_section(
     region_areas_list,
     atlas_labels,
     per_point_undamaged,
-    per_centroid_undamaged
+    per_centroid_undamaged,
 ):
     """
     Quantifies labeled points per section.
@@ -159,7 +163,11 @@ def _quantify_per_section(
         current_points_undamaged = per_point_undamaged[prev_pl : prev_pl + pl]
         current_centroids_undamaged = per_centroid_undamaged[prev_cl : prev_cl + cl]
         current_df = pixel_count_per_region(
-            current_points, current_centroids, current_points_undamaged, current_centroids_undamaged, atlas_labels
+            current_points,
+            current_centroids,
+            current_points_undamaged,
+            current_centroids_undamaged,
+            atlas_labels,
         )
         current_df_new = _merge_dataframes(current_df, ra, atlas_labels)
         per_section_df.append(current_df_new)
@@ -211,7 +219,9 @@ def _combine_slice_reports(per_section_df, atlas_labels):
         .drop(columns=["area_fraction"])
     )
     label_df["area_fraction"] = label_df["pixel_count"] / label_df["region_area"]
-    label_df["undamaged_area_fraction"] = label_df["undamaged_pixel_count"] / label_df["undamaged_region_area"]
+    label_df["undamaged_area_fraction"] = (
+        label_df["undamaged_pixel_count"] / label_df["undamaged_region_area"]
+    )
     label_df.fillna(0, inplace=True)
 
     label_df = label_df.set_index("idx")
diff --git a/PyNutil/processing/generate_target_slice.py b/PyNutil/processing/generate_target_slice.py
index 937d4d474047f7c8484744c2e50c9d11a47c58b1..a8bc9c570d4d43b7d4db49e0f73c1cfd44bfb686 100644
--- a/PyNutil/processing/generate_target_slice.py
+++ b/PyNutil/processing/generate_target_slice.py
@@ -1,6 +1,7 @@
 import numpy as np
 import math
 
+
 def generate_target_slice(ouv, atlas):
     """
     Generates a target slice from the atlas using the given orientation and vectors.
diff --git a/PyNutil/processing/transformations.py b/PyNutil/processing/transformations.py
index 671ea2d5e9789bac7a6d2e5210a480e0a3096a1d..62b8ddb4ebdc8b18ce4fb05c07b45fd65114f0e4 100644
--- a/PyNutil/processing/transformations.py
+++ b/PyNutil/processing/transformations.py
@@ -1,6 +1,7 @@
 import numpy as np
 from .visualign_deformations import transform_vec
 
+
 def transform_to_registration(seg_height, seg_width, reg_height, reg_width):
     """
     Returns the scaling factors to transform the segmentation to the registration space.
diff --git a/PyNutil/processing/utils.py b/PyNutil/processing/utils.py
index b09bc8323834a577b6513e04af1a24e34b82fcbe..ed9b64c554e733fd9675420a69cfc66aa46ced61 100644
--- a/PyNutil/processing/utils.py
+++ b/PyNutil/processing/utils.py
@@ -3,6 +3,7 @@ import pandas as pd
 import re
 from glob import glob
 
+
 def number_sections(filenames, legacy=False):
     """
     Returns the section numbers of filenames.
@@ -196,7 +197,14 @@ def start_and_join_threads(threads):
     [t.join() for t in threads]
 
 
-def process_results(points_list, centroids_list, points_labels, centroids_labels, points_undamaged_list, centroids_undamaged_list):
+def process_results(
+    points_list,
+    centroids_list,
+    points_labels,
+    centroids_labels,
+    points_undamaged_list,
+    centroids_undamaged_list,
+):
     """
     Processes the results from the threads.
 
@@ -218,7 +226,9 @@ def process_results(points_list, centroids_list, points_labels, centroids_labels
     points_labels = [pl for pl in points_labels if None not in pl]
     centroids_labels = [cl for cl in centroids_labels if None not in cl]
     points_undamaged_list = [pul for pul in points_undamaged_list if None not in pul]
-    centroids_undamaged_list = [cul for cul in centroids_undamaged_list if None not in cul]
+    centroids_undamaged_list = [
+        cul for cul in centroids_undamaged_list if None not in cul
+    ]
     if len(points_list) == 0:
         points = np.array([])
         points_labels = np.array([])
@@ -237,4 +247,13 @@ def process_results(points_list, centroids_list, points_labels, centroids_labels
         centroids_labels = np.concatenate(centroids_labels)
         centroids_undamaged = np.concatenate(centroids_undamaged_list)
 
-    return points, centroids, points_labels, centroids_labels, points_len, centroids_len, points_undamaged, centroids_undamaged
+    return (
+        points,
+        centroids,
+        points_labels,
+        centroids_labels,
+        points_len,
+        centroids_len,
+        points_undamaged,
+        centroids_undamaged,
+    )
diff --git a/PyNutil/processing/visualign_deformations.py b/PyNutil/processing/visualign_deformations.py
index 3b6e12ff5c88736aca1801d1dd167c6fef1c069c..d0303452215f11f5fc399124621e02cf6cb91759 100644
--- a/PyNutil/processing/visualign_deformations.py
+++ b/PyNutil/processing/visualign_deformations.py
@@ -1,6 +1,8 @@
 """This code was written by Gergely Csucs, Harry Carey and Rembrandt Bakker"""
+
 import numpy as np
 
+
 def triangulate(w, h, markers):
     """
     Triangulates a set of markers.
diff --git a/demos/basic_example_custom_atlas.py b/demos/basic_example_custom_atlas.py
index b2b9c189f5e61108bd56a1c9037d2a3cc13ea78e..d0f4978d1beb77a768ec7557abd5ddf0390a02e2 100644
--- a/demos/basic_example_custom_atlas.py
+++ b/demos/basic_example_custom_atlas.py
@@ -1,4 +1,5 @@
 import sys
+
 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
 from PyNutil import PyNutil
 import os