diff --git a/python/example/network_ring.py b/python/example/network_ring.py
index c1c6a07bc2d0c23003dabcdb38c1b8433e4ea4ee..46c6ada31f0dd50a69e274158727cea9a19bfab5 100755
--- a/python/example/network_ring.py
+++ b/python/example/network_ring.py
@@ -137,5 +137,5 @@ for gid in range(ncells):
     samples, meta = sim.samples(handles[gid])[0]
     df_list.append(pandas.DataFrame({'t/ms': samples[:, 0], 'U/mV': samples[:, 1], 'Cell': f"cell {gid}"}))
 
-df = pandas.concat(df_list)
+df = pandas.concat(df_list,ignore_index=True)
 seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",hue="Cell",ci=None).savefig('network_ring_result.svg')
diff --git a/python/example/network_ring_mpi.py b/python/example/network_ring_mpi.py
index 51bde9d46e16f9acb27c72eae17e545b15db259d..52e88aeceb7c16d2dc74da65fc42935f90ca0c43 100644
--- a/python/example/network_ring_mpi.py
+++ b/python/example/network_ring_mpi.py
@@ -143,5 +143,5 @@ for gid in range(ncells):
         df_list.append(pandas.DataFrame({'t/ms': samples[:, 0], 'U/mV': samples[:, 1], 'Cell': f"cell {gid}"}))
 
 if len(df_list):
-    df = pandas.concat(df_list)
+    df = pandas.concat(df_list,ignore_index=True)
     df.to_csv(f"result_mpi_{context.rank}.csv", float_format='%g')
diff --git a/python/example/network_ring_mpi_plot.py b/python/example/network_ring_mpi_plot.py
index c5ec346c38529f9a4a5daab9a9d2cc3c4e30618d..5f54baefa8554630eb2d6bfb92c2b4eaf877dbe2 100644
--- a/python/example/network_ring_mpi_plot.py
+++ b/python/example/network_ring_mpi_plot.py
@@ -10,5 +10,5 @@ df_list = []
 for result in results:
     df_list.append(pandas.read_csv(result))
 
-df = pandas.concat(df_list)
-seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",hue="Cell",ci=None).savefig('mpi_result.svg')
\ No newline at end of file
+df = pandas.concat(df_list,ignore_index=True)
+seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",hue="Cell",ci=None).savefig('mpi_result.svg')
diff --git a/python/example/single_cell_detailed.py b/python/example/single_cell_detailed.py
index b19627f946c090d1215d245bad9f94a267a79a96..0ff3af500414d4f09f4597edf399788825f58f56 100755
--- a/python/example/single_cell_detailed.py
+++ b/python/example/single_cell_detailed.py
@@ -118,8 +118,8 @@ for s in model.spikes:
 
 # (10) Plot the voltages
 
-df = pandas.DataFrame()
+df_list = []
 for t in model.traces:
-    df=df.append(pandas.DataFrame({'t/ms': t.time, 'U/mV': t.value, 'Location': str(t.location), 'Variable': t.variable}))
-
+    df_list.append(pandas.DataFrame({'t/ms': t.time, 'U/mV': t.value, 'Location': str(t.location), 'Variable': t.variable}))
+df = pandas.concat(df_list,ignore_index=True)
 seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",hue="Location",col="Variable",ci=None).savefig('single_cell_detailed_result.svg')
diff --git a/python/example/single_cell_detailed_recipe.py b/python/example/single_cell_detailed_recipe.py
index 281da877c3b492af7312440eb68593cce80ecc39..d9275e8d5ffeed3f1f5990906c05b69859a318a0 100644
--- a/python/example/single_cell_detailed_recipe.py
+++ b/python/example/single_cell_detailed_recipe.py
@@ -182,7 +182,8 @@ for d, m in sim.samples(handle):
     data.append(d)
     meta.append(m)
 
-df = pandas.DataFrame()
+df_list = []
 for i in range(len(data)):
-    df = df.append(pandas.DataFrame({'t/ms': data[i][:, 0], 'U/mV': data[i][:, 1], 'Location': str(meta[i]), 'Variable':'voltage'}))
+    df_list.append(pandas.DataFrame({'t/ms': data[i][:, 0], 'U/mV': data[i][:, 1], 'Location': str(meta[i]), 'Variable':'voltage'}))
+df = pandas.concat(df_list,ignore_index=True)
 seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",hue="Location",col="Variable",ci=None).savefig('single_cell_recipe_result.svg')
diff --git a/python/example/single_cell_model.py b/python/example/single_cell_model.py
index e8e461c462b89d1ab8ea059fdcf974fc7d9d0acd..a21445d3f9f607dca138153b9d778917f1bf7336 100755
--- a/python/example/single_cell_model.py
+++ b/python/example/single_cell_model.py
@@ -4,8 +4,6 @@
 import arbor
 import pandas, seaborn # You may have to pip install these.
 
-print(arbor.__config__)
-
 # (1) Create a morphology with a single (cylindrical) segment of length=diameter=6 μm
 tree = arbor.segment_tree()
 tree.append(arbor.mnpos, arbor.mpoint(-3, 0, 0, 3), arbor.mpoint(3, 0, 0, 3), tag=1)
@@ -41,11 +39,11 @@ if len(m.spikes)>0:
 else:
     print('no spikes')
 
-# (8) Plot the recorded voltages over time.
+# (9) Plot the recorded voltages over time.
 print("Plotting results ...")
 seaborn.set_theme() # Apply some styling to the plot
 df = pandas.DataFrame({'t/ms': m.traces[0].time, 'U/mV': m.traces[0].value})
 seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",ci=None).savefig('single_cell_model_result.svg')
 
-# (9) Optionally, you can store your results for later processing.
+# (10) Optionally, you can store your results for later processing.
 df.to_csv('single_cell_model_result.csv', float_format='%g')
diff --git a/python/example/single_cell_nml.py b/python/example/single_cell_nml.py
index 7c5920bcb828c8d4dee65cba35f46e0563f98114..d582b36bf16e711b9f681cc7d92b9896c9bcc20f 100755
--- a/python/example/single_cell_nml.py
+++ b/python/example/single_cell_nml.py
@@ -103,6 +103,6 @@ df_list = []
 for t in m.traces:
     df_list.append(pandas.DataFrame({'t/ms': t.time, 'U/mV': t.value, 'Location': str(t.location), "Variable": t.variable}))
 
-df = pandas.concat(df_list)
+df = pandas.concat(df_list,ignore_index=True)
 
 seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",hue="Location",col="Variable",ci=None).savefig('single_cell_nml.svg')
diff --git a/python/example/single_cell_recipe.py b/python/example/single_cell_recipe.py
index 01af5d469dbeaf7f094428804a6f4250492896f7..193e258a014883c40cc3e5d66b17e746df7bf80e 100644
--- a/python/example/single_cell_recipe.py
+++ b/python/example/single_cell_recipe.py
@@ -87,7 +87,7 @@ else:
     print('no spikes')
 
 print("Plotting results ...")
-seaborn.set_theme() # Apply some styling to the plot
+
 df = pandas.DataFrame({'t/ms': data[:, 0], 'U/mV': data[:, 1]})
 seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV", ci=None).savefig('single_cell_recipe_result.svg')
 
diff --git a/python/example/single_cell_swc.py b/python/example/single_cell_swc.py
index 525d90e890c1c992253e1668ed97a117332e88d7..2090f16d706ded147ae9cccdcb366a1b739731f5 100755
--- a/python/example/single_cell_swc.py
+++ b/python/example/single_cell_swc.py
@@ -95,6 +95,6 @@ df_list = []
 for t in m.traces:
     df_list.append(pandas.DataFrame({'t/ms': t.time, 'U/mV': t.value, 'Location': str(t.location), "Variable": t.variable}))
 
-df = pandas.concat(df_list)
+df = pandas.concat(df_list,ignore_index=True)
 
 seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",hue="Location",col="Variable",ci=None).savefig('single_cell_swc.svg')