From d3e99c230be889db3f6e2b39080cd6fcd28b7ce7 Mon Sep 17 00:00:00 2001 From: Brent Huisman <brenthuisman@users.noreply.github.com> Date: Mon, 5 Oct 2020 10:20:58 +0200 Subject: [PATCH] Update Python examples (#1166) * Python examples: Updated to use region expressions (quotes) * Python examples: Uniform plotting * Python examples: Removed tutorial directory (example roughly matches python/example/single_cell_model.py) * Python examples: Rewrote flat_cell_builder() to segment_tree() --- python/example/{ring.py => network_ring.py} | 64 ++++++++--------- python/example/single_cell_model.py | 41 +++++++++++ ...builder.py => single_cell_multi_branch.py} | 71 ++++++++++--------- python/example/single_cell_swc.py | 19 ++--- python/tutorial/example1.py | 56 --------------- 5 files changed, 111 insertions(+), 140 deletions(-) rename python/example/{ring.py => network_ring.py} (72%) create mode 100644 python/example/single_cell_model.py rename python/example/{single_cell_builder.py => single_cell_multi_branch.py} (57%) delete mode 100644 python/tutorial/example1.py diff --git a/python/example/ring.py b/python/example/network_ring.py similarity index 72% rename from python/example/ring.py rename to python/example/network_ring.py index 17d01f10..b7d2a9bc 100644 --- a/python/example/ring.py +++ b/python/example/network_ring.py @@ -1,36 +1,45 @@ import sys import arbor -import matplotlib.pyplot as plt +import pandas, seaborn +from math import sqrt # Construct a cell with the following morphology. # The soma (at the root of the tree) is marked 's', and # the end of each branch i is marked 'bi'. # -# b2 +# b1 # / -# s----b1 +# s----b0 # \ -# b3 +# b2 def make_cable_cell(gid): - b = arbor.flat_cell_builder() + # Associate labels to tags + labels = arbor.label_dict() + labels['soma'] = '(tag 1)' + labels['dend'] = '(tag 3)' + + # Build a segment tree + tree = arbor.segment_tree() + + # Soma (tag=1) with radius 6 μm, modelled as cylinder of length 2*radius + s = tree.append(arbor.mnpos, arbor.mpoint(-12, 0, 0, 6), arbor.mpoint(0, 0, 0, 6), tag=1) + + # Single dendrite (tag=3) of length 100 μm and radius 2 μm attached to soma. + b0 = tree.append(s, arbor.mpoint(0, 0, 0, 2), arbor.mpoint(100, 0, 0, 2), tag=3) - # Soma with radius 6 μm, modelled as cylinder of length 2*radius - s = b.add_cable(length=12, radius=6, name="soma", ncomp=1) - # Single dendrite of length 100 μm and radius 2 μm attached to soma. - b1 = b.add_cable(parent=s, length=100, radius=2, name="dend", ncomp=1) - # Attach two dendrites of length 50 μm to the end of the first dendrite. + # Attach two dendrites (tag=3) of length 50 μm to the end of the first dendrite. # Radius tapers from 2 to 0.5 μm over the length of the dendrite. - b2 = b.add_cable(parent=b1, length=50, radius=(2,0.5), name="dend", ncomp=1) + b1 = tree.append(b0, arbor.mpoint(100, 0, 0, 2), arbor.mpoint(100+50/sqrt(2), 50/sqrt(2), 0, 0.5), tag=3) # Constant radius of 1 μm over the length of the dendrite. - b3 = b.add_cable(parent=b1, length=50, radius=1, name="dend", ncomp=1) + b2 = tree.append(b0, arbor.mpoint(100, 0, 0, 1), arbor.mpoint(100+50/sqrt(2), -50/sqrt(2), 0, 1), tag=3) # Mark location for synapse at the midpoint of branch 1 (the first dendrite). - b.add_label('synapse_site', '(location 1 0.5)') + labels['synapse_site'] = '(location 1 0.5)' # Mark the root of the tree. - b.add_label('root', '(root)') + labels['root'] = '(root)' - cell = b.build() + cell = arbor.cable_cell(tree, labels) # Put hh dynamics on soma, and passive properties on the dendrites. cell.paint('"soma"', 'hh') @@ -138,24 +147,9 @@ print('spikes:') for sp in spike_recorder.spikes: print(' ', sp) -# Plot the voltage trace at the soma of each cell. -fig, ax = plt.subplots() +# Plot the recorded voltages over time. +df = pandas.DataFrame() for gid in range(ncells): - times = [s.time for s in samplers[gid].samples(arbor.cell_member(gid,0))] - volts = [s.value for s in samplers[gid].samples(arbor.cell_member(gid,0))] - ax.plot(times, volts) - -legends = ['cell {}'.format(gid) for gid in range(ncells)] -ax.legend(legends) - -ax.set(xlabel='time (ms)', ylabel='voltage (mV)', title='ring demo') -plt.xlim(0,tfinal) -plt.ylim(-80,40) -ax.grid() - -plot_to_file=False -if plot_to_file: - fig.savefig("voltages.png", dpi=300) - print('voltage samples saved to voltages.png') -else: - plt.show() + for s in samplers[gid].samples(arbor.cell_member(gid,0)): + df=df.append({'t/ms': s.time, 'U/mV': s.value, 'Cell': f"cell {gid}"}, ignore_index=True) +seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",hue="Cell").savefig('network_ring_result.svg') diff --git a/python/example/single_cell_model.py b/python/example/single_cell_model.py new file mode 100644 index 00000000..a7ee1ff2 --- /dev/null +++ b/python/example/single_cell_model.py @@ -0,0 +1,41 @@ +import arbor + +# (1) Create a morphology with a single (cylindrical) segment of length=diameter=6 μm +tree = arbor.segment_tree() +tree.append(arbor.mnpos, arbor.mpoint(-3, 0, 0, 3), arbor.mpoint(3, 0, 0, 3), tag=1) + +# (2) Define the soma and its center +labels = arbor.label_dict({'soma': '(tag 1)', + 'center': '(location 0 0.5)'}) + +# (3) Create cell and set properties +cell = arbor.cable_cell(tree, labels) +cell.set_properties(Vm=-40) +cell.paint('soma', 'hh') +cell.place('center', arbor.iclamp( 10, 2, 0.8)) +cell.place('center', arbor.spike_detector(-10)) + +# (4) Make single cell model. +m = arbor.single_cell_model(cell) + +# (5) Attach voltage probe sampling at 10 kHz (every 0.1 ms). +m.probe('voltage', 'center', frequency=10000) + +# (6) Run simulation for 100 ms of simulated activity. +m.run(tfinal=100) + +# (7) Print spike times, if any. +if len(m.spikes)>0: + print('{} spikes:'.format(len(m.spikes))) + for s in m.spikes: + print('{:3.3f}'.format(s)) +else: + print('no spikes') + +# (8) Plot the recorded voltages over time. +import pandas, seaborn # You may have to pip install these. +df = pandas.DataFrame({'t/ms': m.traces[0].time, 'U/mV': m.traces[0].value}) +seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV").savefig('single_cell_model_result.svg') + +# (9) Optionally, you can store your results for later processing. +df.to_csv('single_cell_model_result.csv', float_format='%g') diff --git a/python/example/single_cell_builder.py b/python/example/single_cell_multi_branch.py similarity index 57% rename from python/example/single_cell_builder.py rename to python/example/single_cell_multi_branch.py index 98ce339b..444eb0b3 100644 --- a/python/example/single_cell_builder.py +++ b/python/example/single_cell_multi_branch.py @@ -1,10 +1,11 @@ import arbor -from arbor import mechanism as mech -from arbor import location as loc -import matplotlib.pyplot as plt +import seaborn +import pandas +from math import sqrt # Make a ball and stick cell model -b = arbor.flat_cell_builder() + +tree = arbor.segment_tree() # Construct a cell with the following morphology. # The soma (at the root of the tree) is marked 's', and @@ -23,32 +24,42 @@ b = arbor.flat_cell_builder() # Start with a spherical soma with radius 6 μm, # approximated with a cylinder of: length = diameter = 12 μm. -s = b.add_cable(length=12, radius=6, name="soma", ncomp=1) + +s = tree.append(arbor.mnpos, arbor.mpoint(-12, 0, 0, 6), arbor.mpoint(0, 0, 0, 6), tag=1) # Add the dendrite cables, labelling those closest to the soma "dendn", # and those furthest with "dendx" because we will set different electrical # properties for the two regions. -b0 = b.add_cable(parent=s, length=100, radius=2, name="dendn", ncomp=100) + +labels = arbor.label_dict() +labels['soma'] = '(tag 1)' +labels['dendn'] = '(tag 5)' +labels['dendx'] = '(tag 6)' + +b0 = tree.append(s, arbor.mpoint(0, 0, 0, 2), arbor.mpoint(100, 0, 0, 2), tag=5) + # Radius tapers from 2 to 0.5 over the length of the branch. -b1 = b.add_cable(parent=b0, length= 50, radius=(2,0.5), name="dendn", ncomp=50) -b2 = b.add_cable(parent=b0, length= 50, radius=1, name="dendn", ncomp=50) -b3 = b.add_cable(parent=b1, length= 50, radius=1, name="dendx", ncomp=50) -b4 = b.add_cable(parent=b1, length= 50, radius=1, name="dendx", ncomp=50) + +b1 = tree.append(b0, arbor.mpoint(100, 0, 0, 2), arbor.mpoint(100+50/sqrt(2), 50/sqrt(2), 0, 0.5), tag=5) +b2 = tree.append(b0, arbor.mpoint(100, 0, 0, 1), arbor.mpoint(100+50/sqrt(2), -50/sqrt(2), 0, 1), tag=5) +b3 = tree.append(b1, arbor.mpoint(100+50/sqrt(2), 50/sqrt(2), 0, 1), arbor.mpoint(100+50/sqrt(2)+50, 50/sqrt(2), 0, 1), tag=6) +b4 = tree.append(b1, arbor.mpoint(100+50/sqrt(2), 50/sqrt(2), 0, 1), arbor.mpoint(100+2*50/sqrt(2), 2*50/sqrt(2), 0, 1), tag=6) # Combine the "dendn" and "dendx" regions into a single "dend" region. # The dendrites were labelled as such so that we can set different # properties on each sub-region, and then combined so that we can # set other properties on the whole dendrites. -b.add_label('dend', '(join (region "dendn") (region "dendx"))') +labels['dend'] = '(join (region "dendn") (region "dendx"))' # Location of stimuli, in the middle of branch 2. -b.add_label('stim_site', '(location 1 0.5)') +labels['stim_site'] = '(location 1 0.5)' # The root of the tree (equivalent to '(location 0 0)') -b.add_label('root', '(root)') -# The tips of the dendrites (3 locations at b4, b3, b5). -b.add_label('dtips', '(terminal)') +labels['root'] = '(root)' +# The tips of the dendrites (3 locations at b4, b3, b2). +labels['dtips'] = '(terminal)' # Extract the cable cell from the builder. -cell = b.build() +# cell = b.build() +cell = arbor.cable_cell(tree, labels) # Set initial membrane potential everywhere on the cell to -40 mV. cell.set_properties(Vm=-40) @@ -66,12 +77,16 @@ cell.place('"stim_site"', arbor.iclamp( 80, 2, 0.8)) # Add a spike detector with threshold of -10 mV. cell.place('"root"', arbor.spike_detector(-10)) +# Discretization: the default discretization in Arbor is 1 compartment per branch. +# Let's be a bit more precise and make that every 2 micron: +cell.compartments_length(2) + # Make single cell model. m = arbor.single_cell_model(cell) # Attach voltage probes, sampling at 10 kHz. -m.probe('voltage', loc(0,0), 10000) # at the soma. -m.probe('voltage', '"dtips"', 10000) # at the tips of the dendrites. +m.probe('voltage', '(location 0 0)', 10000) # at the soma. +m.probe('voltage', '"dtips"', 10000) # at the tips of the dendrites. # Run simulation for 100 ms of simulated activity. tfinal=100 @@ -86,20 +101,8 @@ else: print('no spikes') # Plot the recorded voltages over time. -fig, ax = plt.subplots() +df = pandas.DataFrame() for t in m.traces: - ax.plot(t.time, t.value) - -legend_labels = ['{}: {}'.format(s.variable, s.location) for s in m.traces] -ax.legend(legend_labels) -ax.set(xlabel='time (ms)', ylabel='voltage (mV)', title='cell builder demo') -plt.xlim(0,tfinal) -plt.ylim(-80,50) -ax.grid() - -# Set to True to save the image to file instead of opening a plot window. -plot_to_file=False -if plot_to_file: - fig.savefig("voltages.png", dpi=300) -else: - plt.show() + df=df.append( pandas.DataFrame({'t/ms': t.time, 'U/mV': t.value, 'Location': t.location, "Variable": t.variable}) ) + +seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",hue="Location",col="Variable").savefig('single_cell_multi_branch_result.svg') diff --git a/python/example/single_cell_swc.py b/python/example/single_cell_swc.py index f50768bb..bb9429d3 100644 --- a/python/example/single_cell_swc.py +++ b/python/example/single_cell_swc.py @@ -11,7 +11,7 @@ import arbor from arbor import mechanism as mech from arbor import location as loc -import matplotlib.pyplot as plt +import pandas, seaborn # Load a cell morphology from an swc file. tree = arbor.load_swc('../../test/unit/swc/pyramidal.swc') @@ -72,19 +72,8 @@ else: print('no spikes') # Plot the recorded voltages over time. -fig, ax = plt.subplots() +df = pandas.DataFrame() for t in m.traces: - ax.plot(t.time, t.value) + df=df.append( pandas.DataFrame({'t/ms': t.time, 'U/mV': t.value, 'Location': t.location, "Variable": t.variable}) ) -legend_labels = ['{}: {}'.format(s.variable, s.location) for s in m.traces] -ax.legend(legend_labels) -ax.set(xlabel='time (ms)', ylabel='voltage (mV)', title='swc morphology demo') -plt.xlim(0,tfinal) -plt.ylim(-80,80) -ax.grid() - -plot_to_file=False -if plot_to_file: - fig.savefig("voltages.png", dpi=300) -else: - plt.show() +seaborn.relplot(data=df, kind="line", x="t/ms", y="U/mV",hue="Location",col="Variable").savefig('single_cell_swc.svg') diff --git a/python/tutorial/example1.py b/python/tutorial/example1.py deleted file mode 100644 index e698363d..00000000 --- a/python/tutorial/example1.py +++ /dev/null @@ -1,56 +0,0 @@ -import arbor - -# Create a morphology with a single segment of length=diameter=5 μm -tree = arbor.segment_tree() -tree.append(arbor.mnpos, arbor.mpoint(-3, 0, 0, 3), arbor.mpoint(3, 0, 0, 3), tag=1) - -labels = arbor.label_dict({'soma': '(tag 1)', 'center': '(location 0 0.5)'}) - -cell = arbor.cable_cell(tree, labels) - -# Set initial membrane potential everywhere on the cell to -40 mV. -cell.set_properties(Vm=-40) -# Put hh dynamics on soma, and passive properties on the dendrites. -cell.paint('"soma"', 'hh') -# Attach stimuli with duration of 100 ns and current of 0.8 nA. -cell.place('"center"', arbor.iclamp( 10, duration=0.1, current=0.8)) -# Add a spike detector with threshold of -10 mV. -cell.place('"center"', arbor.spike_detector(-10)) - -# Make single cell model. -m = arbor.single_cell_model(cell) - -# Attach voltage probes, sampling at 1 MHz. -m.probe('voltage', '"center"', 1000000) - -# Run simulation for tfinal ms with time steps of 1 μs. -tfinal=30 -m.run(tfinal, dt=0.001) - -# Print spike times. -if len(m.spikes)>0: - print('{} spikes:'.format(len(m.spikes))) - for s in m.spikes: - print(' {:7.4f}'.format(s)) -else: - print('no spikes') - -# Plot the recorded voltages over time. -import matplotlib.pyplot as plt -fig, ax = plt.subplots() -for t in m.traces: - ax.plot(t.time, t.value) - -legend_labels = ['{}: {}'.format(s.variable, s.location) for s in m.traces] -ax.legend(legend_labels) -ax.set(xlabel='time (ms)', ylabel='voltage (mV)', title='cell builder demo') -plt.xlim(0,tfinal) -plt.ylim(-80,50) -ax.grid() - -# Set to True to save the image to file instead of opening a plot window. -plot_to_file=False -if plot_to_file: - fig.savefig("voltages.png", dpi=300) -else: - plt.show() -- GitLab