diff --git a/data/ball_and_stick.swc b/data/ball_and_stick.swc
new file mode 100644
index 0000000000000000000000000000000000000000..1737539b1b4d73d202cecab2ecb7e5599d93064e
--- /dev/null
+++ b/data/ball_and_stick.swc
@@ -0,0 +1,8 @@
+# ball and stick model with
+#   - soma with radius 12.6157/2
+#   - dendrite with length 200 and radius 0.5
+
+1 1     0.0     0.0     0.0     6.30785 -1
+2 2     6.30785 0.0     0.0     0.5      1
+3 2   206.30785 0.0     0.0     0.5      2
+
diff --git a/nrn/ball_and_3stick.py b/nrn/ball_and_3stick.py
new file mode 100644
index 0000000000000000000000000000000000000000..3e777261f88fde9c53407d10fe0a6fe74cec4c5e
--- /dev/null
+++ b/nrn/ball_and_3stick.py
@@ -0,0 +1,154 @@
+from timeit import default_timer as timer
+import os.path
+from matplotlib import pyplot
+import numpy as np
+import json
+import argparse
+from neuron import gui, h
+
+parser = argparse.ArgumentParser(description='generate spike train ball and stick model with hh channels at soma and pas channels in dendrite')
+parser.add_argument('--plot', action='store_true', dest='plot')
+args = parser.parse_args()
+
+soma = h.Section(name='soma')
+dend = [
+        h.Section(name='dend0'),
+        h.Section(name='dend1'),
+        h.Section(name='dend2'),
+    ]
+
+dend[0].connect(soma(1))
+dend[1].connect(dend[0](1))
+dend[2].connect(dend[0](1))
+
+# Surface area of cylinder is 2*pi*r*h (sealed ends are implicit).
+# Here we make a square cylinder in that the diameter
+# is equal to the height, so diam = h. ==> Area = 4*pi*r^2
+# We want a soma of 500 microns squared:
+# r^2 = 500/(4*pi) ==> r = 6.2078, diam = 12.6157
+soma.L = soma.diam = 12.6157 # Makes a soma of 500 microns squared.
+for d in dend :
+    d.L = 100
+    d.diam = 1
+
+for sec in h.allsec():
+    sec.Ra = 100    # Axial resistance in Ohm * cm
+    sec.cm = 1      # Membrane capacitance in micro Farads / cm^2
+
+# Insert active Hodgkin-Huxley current in the soma
+soma.insert('hh')
+soma.gnabar_hh = 0.12  # Sodium conductance in S/cm2
+soma.gkbar_hh = 0.036  # Potassium conductance in S/cm2
+soma.gl_hh = 0.0003    # Leak conductance in S/cm2
+soma.el_hh = -54.3     # Reversal potential in mV
+
+# Insert passive current in the dendrite
+for d in dend :
+    d.insert('pas')
+    d.g_pas = 0.001  # Passive conductance in S/cm2
+    d.e_pas = -65    # Leak reversal potential mV
+
+stim = [
+     h.IClamp(dend[1](1)),
+     h.IClamp(dend[2](1))
+   ]
+stim[0].delay = 5
+stim[0].dur = 80
+stim[0].amp = 4.5*0.1
+
+stim[1].delay = 40
+stim[1].dur = 10
+stim[1].amp = -2*0.1
+
+if args.plot :
+    pyplot.figure(figsize=(8,4)) # Default figsize is (8,6)
+    pyplot.grid()
+
+simdur = 100.0
+h.tstop = simdur
+h.dt = 0.001
+
+start = timer()
+results = []
+for nseg in [5, 11, 51, 101] :
+
+    print 'simulation with ', nseg, ' compartments in dendrite...'
+
+    for d in dend :
+        d.nseg=nseg
+
+    # record voltages
+    v_soma = h.Vector() # soma
+    v_dend = h.Vector() # at the dendrite branching point
+    v_clamp= h.Vector() # end of dendrite at clamp location
+
+    v_soma.record( soma(0.5)._ref_v)
+    v_dend.record( dend[0](1)._ref_v)
+    v_clamp.record(dend[1](1)._ref_v)
+
+    # record spikes
+    # this is a bit verbose, no?
+    spike_counter_soma = h.APCount(soma(0.5))
+    spike_counter_soma.thresh = -0
+    spike_counter_dend = h.APCount(dend[0](1))
+    spike_counter_dend.thresh = -20
+    spike_counter_clamp = h.APCount(dend[1](1.0))
+    spike_counter_clamp.thresh = 20
+
+    spikes_soma = h.Vector() # soma
+    spikes_dend = h.Vector() # middle of dendrite
+    spikes_clamp= h.Vector() # end of dendrite at clamp location
+
+    spike_counter_soma.record(spikes_soma)
+    spike_counter_dend.record(spikes_dend)
+    spike_counter_clamp.record(spikes_clamp)
+
+    # record time stamps
+    t_vec = h.Vector()
+    t_vec.record(h._ref_t)
+
+    # finally it's time to run the simulation
+    h.run()
+
+    results.append(
+        {
+            "nseg": nseg,
+            "dt" : h.dt,
+            "measurements": {
+               "soma" : {
+                   "thresh" :  spike_counter_soma.thresh,
+                   "spikes" :  spikes_soma.to_python()
+               },
+               "dend" : {
+                   "thresh" :  spike_counter_dend.thresh,
+                   "spikes" :  spikes_dend.to_python()
+               },
+               "clamp" : {
+                   "thresh" :  spike_counter_clamp.thresh,
+                   "spikes" :  spikes_clamp.to_python()
+               }
+           }
+        }
+    )
+
+    if args.plot :
+        pyplot.plot(t_vec, v_soma,  'k', linewidth=1, label='soma ' + str(nseg))
+        pyplot.plot(t_vec, v_dend,  'b', linewidth=1, label='dend ' + str(nseg))
+        pyplot.plot(t_vec, v_clamp, 'r', linewidth=1, label='clamp ' + str(nseg))
+
+# time the simulations
+end = timer()
+print "took ", end-start, " seconds"
+
+# save the spike info as in json format
+fp = open('ball_and_3stick.json', 'w')
+json.dump(results, fp, indent=2)
+
+if args.plot :
+    pyplot.xlabel('time (ms)')
+    pyplot.ylabel('mV')
+    pyplot.xlim([0, simdur])
+    pyplot.legend()
+
+    pyplot.show()
+
diff --git a/nrn/ball_and_stick.py b/nrn/ball_and_stick.py
index 5fe977fe594ada556ebce1da09c9a15c3f3b03e3..24562337a4baffd7a1ae3a1e7885cb07e06987ec 100644
--- a/nrn/ball_and_stick.py
+++ b/nrn/ball_and_stick.py
@@ -55,7 +55,7 @@ h.dt = 0.001
 
 start = timer()
 results = []
-for nseg in [5, 11, 21, 41, 81, 161] :
+for nseg in [5, 11, 51, 101] :
 
     print 'simulation with ', nseg, ' compartments in dendrite...'
 
diff --git a/nrn/generate_validation.sh b/nrn/generate_validation.sh
new file mode 100755
index 0000000000000000000000000000000000000000..f35d3521e9d2ce785a01bc14cd966d4910ecf7f7
--- /dev/null
+++ b/nrn/generate_validation.sh
@@ -0,0 +1,3 @@
+python2.7 ./soma.py
+python2.7 ./ball_and_stick.py
+python2.7 ./ball_and_3stick.py
diff --git a/nrn/generate_validation_data.sh b/nrn/generate_validation_data.sh
deleted file mode 100755
index 8627a0c56ecd1f2137178a193be99207cb06ef46..0000000000000000000000000000000000000000
--- a/nrn/generate_validation_data.sh
+++ /dev/null
@@ -1,2 +0,0 @@
-python2.7 soma.py
-
diff --git a/tests/util.hpp b/tests/util.hpp
index 7a0027448e46c860471aeed68ebd8ed8e411dfe0..b5e25d72d0ab5d141f581d183771f249e48f438b 100644
--- a/tests/util.hpp
+++ b/tests/util.hpp
@@ -111,7 +111,7 @@ operator<< (std::ostream& o, spike_comparison const& spikes)
         buffer, sizeof(buffer),
         "min,max = %10.8f,%10.8f | mean,rms = %10.8f,%10.8f | max_rel = %10.8f",
         spikes.min, spikes.max, spikes.mean, spikes.rms,
-        spikes.max_relative_error()*100
+        spikes.max_relative_error()
     );
     return o << buffer;
 }
diff --git a/tests/validate_ball_and_stick.cpp b/tests/validate_ball_and_stick.cpp
index eac29e2e84f20653acdb7555714f9ed6c6e3e555..024c7fdbde036cadf169744a1cc95269bc2778d4 100644
--- a/tests/validate_ball_and_stick.cpp
+++ b/tests/validate_ball_and_stick.cpp
@@ -8,7 +8,7 @@
 
 #include <json/src/json.hpp>
 
-// compares results with those generated by nrn/soma.py
+// compares results with those generated by nrn/ball_and_stick.py
 TEST(ball_and_stick, neuron_baseline)
 {
     using namespace nest::mc;
@@ -27,7 +27,7 @@ TEST(ball_and_stick, neuron_baseline)
     auto dendrite = cell.add_cable(0, segmentKind::dendrite, 0.5, 0.5, 200);
     dendrite->add_mechanism(pas_parameters());
 
-    dendrite->mechanism("membrane").set("r_L", 100); // no effect for single compartment cell
+    dendrite->mechanism("membrane").set("r_L", 100);
 
     // add stimulus
     cell.add_stimulus({1,1}, {5., 80., 0.3});
@@ -119,17 +119,170 @@ TEST(ball_and_stick, neuron_baseline)
     }
 
     // print results
+    auto colors = {memory::util::kWhite, memory::util::kGreen, memory::util::kYellow};
     for(auto& r : results){
-        // select the location with the largest error for printing
-        auto m =
-            std::max_element(
-                r.comparisons.begin(), r.comparisons.end(),
-                [](testing::spike_comparison& l, testing::spike_comparison& r)
-                {return l.max_relative_error()<r.max_relative_error();}
+        auto color = colors.begin();
+        for(auto const& result : r.comparisons) {
+            std::cout << std::setw(5) << r.n_comparments << " compartments : ";
+            std::cout << memory::util::colorize(util::pprintf("%\n", result), *(color++));
+        }
+    }
+
+    // sort results in ascending order of compartments
+    std::sort(
+        results.begin(), results.end(),
+        [](const result& l, const result& r)
+            {return l.n_comparments<r.n_comparments;}
+    );
+
+    // the strategy for testing is the following:
+    //  1. test that the solution converges to the finest reference solution as
+    //     the number of compartments increases (i.e. spatial resolution is
+    //     refined)
+    for(auto i=1u; i<results.size(); ++i) {
+        for(auto j=0; j<3; ++j) {
+            EXPECT_TRUE(
+                  results[i].comparisons[j].max_relative_error()
+                < results[i-1].comparisons[j].max_relative_error()
             );
-        std::cout << std::setw(5) << r.n_comparments
-                  << " compartments : " << *m
-                  << "\n";
+        }
+    }
+
+    //  2. test that the best solution (i.e. with most compartments) matches the
+    //     reference solution closely (less than 0.5% over the course of 100ms
+    //     simulation)
+    auto tol = 0.5;
+    for(auto j=0; j<3; ++j) {
+        EXPECT_TRUE(results.back().comparisons[j].max_relative_error()*100<tol);
+    }
+}
+
+// compares results with those generated by nrn/ball_and_3sticks.py
+TEST(ball_and_3stick, neuron_baseline)
+{
+    using namespace nest::mc;
+    using namespace nlohmann;
+
+    nest::mc::cell cell;
+
+    // setup global state for the mechanisms
+    nest::mc::mechanisms::setup_mechanism_helpers();
+
+    // Soma with diameter 12.6157 um and HH channel
+    auto soma = cell.add_soma(12.6157/2.0);
+    soma->add_mechanism(hh_parameters());
+
+    // add dendrite of length 200 um and diameter 1 um with passive channel
+    std::vector<cable_segment*> dendrites;
+    dendrites.push_back(cell.add_cable(0, segmentKind::dendrite, 0.5, 0.5, 100));
+    dendrites.push_back(cell.add_cable(1, segmentKind::dendrite, 0.5, 0.5, 100));
+    dendrites.push_back(cell.add_cable(1, segmentKind::dendrite, 0.5, 0.5, 100));
+
+    for(auto dend : dendrites) {
+        dend->add_mechanism(pas_parameters());
+        dend->mechanism("membrane").set("r_L", 100);
+    }
+
+    // add stimulus
+    cell.add_stimulus({2,1}, {5.,  80., 0.45});
+    cell.add_stimulus({3,1}, {40., 10.,-0.2});
+
+    // load data from file
+    auto cell_data = testing::load_spike_data("../nrn/ball_and_3stick.json");
+    EXPECT_TRUE(cell_data.size()>0);
+    if(cell_data.size()==0) return;
+
+    json& nrn =
+        *std::max_element(
+            cell_data.begin(), cell_data.end(),
+            [](json& lhs, json& rhs) {return lhs["nseg"]<rhs["nseg"];}
+        );
+
+    auto& measurements = nrn["measurements"];
+
+    double dt = nrn["dt"];
+    double tfinal =   100.; // ms
+    int nt = tfinal/dt;
+
+    // inline type for storing the results of a simulation along with
+    // the information required to compare two simulations for accuracy
+    struct result {
+        std::vector<std::vector<double>> spikes;
+        std::vector<std::vector<double>> baseline_spikes;
+        std::vector<testing::spike_comparison> comparisons;
+        std::vector<double> thresh;
+        int n_comparments;
+
+        result(int nseg, double dt,
+          std::vector<std::vector<double>> &v,
+          json& measurements
+        ) {
+            n_comparments = nseg;
+            baseline_spikes = {
+                measurements["soma"]["spikes"],
+                measurements["dend"]["spikes"],
+                measurements["clamp"]["spikes"]
+            };
+            thresh = {
+                measurements["soma"]["thresh"],
+                measurements["dend"]["thresh"],
+                measurements["clamp"]["thresh"]
+            };
+            for(auto i=0; i<3; ++i) {
+                // calculate the NEST MC spike times
+                spikes.push_back
+                    (testing::find_spikes(v[i], thresh[i], dt));
+                // compare NEST MC and baseline NEURON spike times
+                comparisons.push_back
+                    (testing::compare_spikes(spikes[i], baseline_spikes[i]));
+            }
+        }
+    };
+
+    std::vector<result> results;
+    for(auto run_index=0u; run_index<cell_data.size(); ++run_index) {
+        auto& run = cell_data[run_index];
+        int num_compartments = run["nseg"];
+        for(auto dend : dendrites) {
+            dend->set_compartments(num_compartments);
+        }
+        std::vector<std::vector<double>> v(3);
+
+        // make the lowered finite volume cell
+        fvm::fvm_cell<double, int> model(cell);
+        auto graph = cell.model();
+
+        // set initial conditions
+        using memory::all;
+        model.voltage()(all) = -65.;
+        model.initialize(); // have to do this _after_ initial conditions are set
+
+        // run the simulation
+        auto soma_comp  = nest::mc::find_compartment_index({0,0.}, graph);
+        auto dend_comp  = nest::mc::find_compartment_index({1,1.}, graph);
+        auto clamp_comp = nest::mc::find_compartment_index({2,1.}, graph);
+        v[0].push_back(model.voltage()[soma_comp]);
+        v[1].push_back(model.voltage()[dend_comp]);
+        v[2].push_back(model.voltage()[clamp_comp]);
+        for(auto i=0; i<nt; ++i) {
+            model.advance(dt);
+            // save voltage at soma
+            v[0].push_back(model.voltage()[soma_comp]);
+            v[1].push_back(model.voltage()[dend_comp]);
+            v[2].push_back(model.voltage()[clamp_comp]);
+        }
+
+        results.push_back( {num_compartments, dt, v, measurements} );
+    }
+
+    // print results
+    auto colors = {memory::util::kWhite, memory::util::kGreen, memory::util::kYellow};
+    for(auto& r : results){
+        auto color = colors.begin();
+        for(auto const& result : r.comparisons) {
+            std::cout << std::setw(5) << r.n_comparments << " compartments : ";
+            std::cout << memory::util::colorize(util::pprintf("%\n", result), *(color++));
+        }
     }
 
     // sort results in ascending order of compartments
@@ -153,10 +306,11 @@ TEST(ball_and_stick, neuron_baseline)
     }
 
     //  2. test that the best solution (i.e. with most compartments) matches the
-    //     reference solution closely (less than 0.1% over the course of 100ms
+    //     reference solution closely (less than 0.5% over the course of 100ms
     //     simulation)
+    auto tol = 0.5;
     for(auto j=0; j<3; ++j) {
-        EXPECT_TRUE(results.back().comparisons[j].max_relative_error()*100<0.1);
+        EXPECT_TRUE(results.back().comparisons[j].max_relative_error()*100<tol);
     }
 }