diff --git a/doc/gs_single_cell.rst b/doc/gs_single_cell.rst index 08d34b057f8267f7ece108a77f0cb425ec57fa8b..1565dd1ab1344746b9bb2303b425415d2b4f8fea 100644 --- a/doc/gs_single_cell.rst +++ b/doc/gs_single_cell.rst @@ -150,7 +150,7 @@ The other measurement we have is that of the potential, which we plot in step ** Arbor stores sampled quantities under :meth:`arbor.single_cell_model.traces<arbor._arbor. single_cell_model.traces>`. You should be seeing something like this: -.. figure:: gen-images/single_cell_model_result.svg +.. figure:: images/single_cell_model_result.svg :width: 400 :align: center diff --git a/doc/scripts/make_images.py b/doc/scripts/make_images.py index 956971a9b35daf1296108339fa519c47b013373d..0df83945c9063a7b80ce3fd821eae19b240c6b1b 100644 --- a/doc/scripts/make_images.py +++ b/doc/scripts/make_images.py @@ -2,8 +2,6 @@ import copy import svgwrite import math import inputs -import seaborn -import pandas tag_colors = ['white', '#ffc2c2', 'gray', '#c2caff'] @@ -11,16 +9,6 @@ tag_colors = ['white', '#ffc2c2', 'gray', '#c2caff'] # ############################################ # -def dataframe_line_plot(input_csv, output_svg): - print('generating:', output_svg) - dataframe = pandas.read_csv(input_csv,index_col=0) - axes = dict(zip(['x','y','hue','col','style'],dataframe.columns.values)) # 5D seems enough for now. - seaborn.relplot(data=dataframe, kind="line", **axes).savefig(output_svg) - -# -# ############################################ -# - def translate(x, f, xshift): return (f*x[0]+xshift, -f*x[1]) @@ -292,8 +280,6 @@ def generate(path=''): label_image(inputs.label_morph, [inputs.reg_radgt5], path+'/radiusgt_label.svg') label_image(inputs.label_morph, [inputs.reg_radge5], path+'/radiusge_label.svg') - # dataframe_line_plot(path+'/../images/single_cell_model_result.csv', path+'/single_cell_model_result.svg') - if __name__ == '__main__': generate('.')