import numpy as np import os from multiarea_model import MultiAreaModel from start_jobs import start_job from config import submit_cmd, jobscript_template from config import base_path """ Example script showing how to simulate the multi-area model on a cluster. We choose the same configuration as in Fig. 3 of Schmidt et al. (2018). """ """ Full model. Needs to be simulated with sufficient resources, for instance on a compute cluster. """ d = {} conn_params = {'g': -11., 'K_stable': os.path.join(base_path, 'K_stable.npy'), 'fac_nu_ext_TH': 1.2, 'fac_nu_ext_5E': 1.125, 'fac_nu_ext_6E': 1.41666667, 'av_indegree_V1': 3950.} input_params = {'rate_ext': 10.} neuron_params = {'V0_mean': -150., 'V0_sd': 50.} network_params = {'N_scaling': 1., 'K_scaling': 1., 'connection_params': conn_params, 'input_params': input_params, 'neuron_params': neuron_params} sim_params = {'t_sim': 2000., 'num_processes': 720, 'local_num_threads': 1, 'recording_dict': {'record_vm': False}} theory_params = {'dt': 0.1} M = MultiAreaModel(network_params, simulation=True, sim_spec=sim_params, theory=True, theory_spec=theory_params) p, r = M.theory.integrate_siegert() print("Mean-field theory predicts an average " "rate of {0:.3f} spikes/s across all populations.".format(np.mean(r[:, -1]))) start_job(M.simulation.label, submit_cmd, jobscript_template)