diff --git a/run_example.py b/run_example.py index c01184426e0c32fdcaa7eac0846cd5f0193a7a17..9a16c376ae9b3c8ab8f38989b5c7d75135b34889 100644 --- a/run_example.py +++ b/run_example.py @@ -1,3 +1,4 @@ +import numpy as np import os from multiarea_model import MultiAreaModel @@ -31,12 +32,12 @@ neuron_params = {'V0_mean': -150., network_params = {'N_scaling': 1., 'K_scaling': 1., 'connection_params': conn_params, + 'input_params': input_params, 'neuron_params': neuron_params} sim_params = {'t_sim': 2000., 'num_processes': 720, 'local_num_threads': 1, - 'input_params': input_params, 'recording_dict': {'record_vm': False}} theory_params = {'dt': 0.1} @@ -46,6 +47,8 @@ M = MultiAreaModel(network_params, simulation=True, theory=True, theory_spec=theory_params) p, r = M.theory.integrate_siegert() +print("Mean-field theory predicts an average " + "rate of {0:.3f} spikes/s across all populations.".format(np.mean(r[:, -1]))) start_job(M.simulation.label, submit_cmd, jobscript_template) @@ -71,13 +74,13 @@ neuron_params = {'V0_mean': -150., network_params = {'N_scaling': 0.01, 'K_scaling': 0.01, 'fullscale_rates': os.path.join(base_path, 'tests/fullscale_rates.json'), + 'input_params': input_params, 'connection_params': conn_params, 'neuron_params': neuron_params} sim_params = {'t_sim': 2000., 'num_processes': 1, 'local_num_threads': 1, - 'input_params': input_params, 'recording_dict': {'record_vm': False}} theory_params = {'dt': 0.1} @@ -87,4 +90,6 @@ M = MultiAreaModel(network_params, simulation=True, theory=True, theory_spec=theory_params) p, r = M.theory.integrate_siegert() +print("Mean-field theory predicts an average " + "rate of {0:.3f} spikes/s across all populations.".format(np.mean(r[:, -1]))) M.simulation.simulate()