diff --git a/figures/Schmidt2018_dyn/plotstyle.rc b/figures/Schmidt2018_dyn/plotstyle.rc index 73563a3f77558a3c7396dc1e8335aac5c2786cf4..ded0ecfe4185f653fddd6ab3988b75a8db893539 100644 --- a/figures/Schmidt2018_dyn/plotstyle.rc +++ b/figures/Schmidt2018_dyn/plotstyle.rc @@ -50,5 +50,4 @@ ps.useafm : False # use of afm fonts, results in small files ps.fonttype : 3 # Output Type 3 (Type3) or Type 42 (TrueType) # set different default color cycle -# axes.color_cycle : 4c72b0, 55a868, c44e52, 8172b2, ccb974, 64b5cd -axes.prop_cycle: cycler('color', ['4c72b0', '55a868', 'c44e52', '8172b2', 'ccb974', '64b5cd']) \ No newline at end of file +axes.color_cycle : 4c72b0, 55a868, c44e52, 8172b2, ccb974, 64b5cd \ No newline at end of file diff --git a/multiarea_model/.ipynb_checkpoints/analysis-checkpoint.py b/multiarea_model/.ipynb_checkpoints/analysis-checkpoint.py index 5102f3c9855d5ec9def442a0c1381b70e6f14ffb..bce048ff226b7bc6baec59b12332524a16f64895 100644 --- a/multiarea_model/.ipynb_checkpoints/analysis-checkpoint.py +++ b/multiarea_model/.ipynb_checkpoints/analysis-checkpoint.py @@ -443,7 +443,8 @@ class Analysis: params['resolution'], kernel=params['kernel']) else: - time_series = np.nan*np.ones(int(params['t_max'] - params['t_min'])) + time_series = np.nan*np.ones(params['t_max'] - params['t_min']) + # time_series = np.nan*np.ones(int(params['t_max'] - params['t_min'])) d_pops[area][pop] = time_series total_spikes = ah.area_spike_train(self.spike_data[area]) @@ -898,7 +899,8 @@ class Analysis: for i, area in enumerate(area_list): print(i, area) - for j, pop in enumerate(self.network.structure['V1']): + for j, pop in enumerate(self.network.structure_reversed['V1']): + # for j, pop in enumerate(self.network.structure['V1']): if pop in self.network.structure[area]: rate = self.pop_rates[area][pop][0] if rate == 0.0: @@ -931,6 +933,7 @@ class Analysis: ax.set_xticks(x_index) ax.set_xticklabels(x_ticks) ax.set_yticks(y_index) + ax.set_yticklabels(self.network.structure_reversed['V1']) ax.set_ylabel('Population', size=18) ax.set_xlabel('Area index', size=18) t = FixedLocator([0.01, 0.1, 1., 10., 100.]) @@ -951,7 +954,6 @@ class Analysis: Saves all post-processed data to files. """ members = inspect.getmembers(self) - print(members) save_list_json = ['structure', 'pop_rates', 'synchrony', 'pop_cv_isi', 'pop_LvR', 'indegree_data', 'indegree_areas_data', diff --git a/multiarea_model/analysis.py b/multiarea_model/analysis.py index 9c1fd318f52697bd90815dc6829c084ff6b06eab..bce048ff226b7bc6baec59b12332524a16f64895 100644 --- a/multiarea_model/analysis.py +++ b/multiarea_model/analysis.py @@ -443,7 +443,8 @@ class Analysis: params['resolution'], kernel=params['kernel']) else: - time_series = np.nan*np.ones(int(params['t_max'] - params['t_min'])) + time_series = np.nan*np.ones(params['t_max'] - params['t_min']) + # time_series = np.nan*np.ones(int(params['t_max'] - params['t_min'])) d_pops[area][pop] = time_series total_spikes = ah.area_spike_train(self.spike_data[area]) @@ -898,7 +899,8 @@ class Analysis: for i, area in enumerate(area_list): print(i, area) - for j, pop in enumerate(self.network.structure['V1']): + for j, pop in enumerate(self.network.structure_reversed['V1']): + # for j, pop in enumerate(self.network.structure['V1']): if pop in self.network.structure[area]: rate = self.pop_rates[area][pop][0] if rate == 0.0: @@ -931,6 +933,7 @@ class Analysis: ax.set_xticks(x_index) ax.set_xticklabels(x_ticks) ax.set_yticks(y_index) + ax.set_yticklabels(self.network.structure_reversed['V1']) ax.set_ylabel('Population', size=18) ax.set_xlabel('Area index', size=18) t = FixedLocator([0.01, 0.1, 1., 10., 100.])