diff --git a/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_LOAD_DATA-checkpoint.py b/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_LOAD_DATA-checkpoint.py
index 7e32bac7ece0e1f4c06ee4f0bdec608e25736171..241c3256b704867be05179a45f2ee381dff11c55 100644
--- a/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_LOAD_DATA-checkpoint.py
+++ b/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_LOAD_DATA-checkpoint.py
@@ -4,34 +4,7 @@ import matplotlib.pyplot as plt
 
 from multiarea_model import Analysis
 
-def load_and_create_data(M):
-    """
-    Analysis class.
-    An instance of the analysis class for the given network and simulation.
-    Can be created as a member class of a multiarea_model instance or standalone.
-
-    Parameters
-    ----------
-    network : MultiAreaModel
-        An instance of the multiarea_model class that specifies
-        the network to be analyzed.
-    simulation : Simulation
-        An instance of the simulation class that specifies
-        the simulation to be analyzed.
-    data_list : list of strings {'spikes', vm'}, optional
-        Specifies which type of data is to load. Defaults to ['spikes'].
-    load_areas : list of strings with area names, optional
-        Specifies the areas for which data is to be loaded.
-        Default value is None and leads to loading of data for all
-        simulated areas.
-    """
-    # Instantiate an analysis class and load spike data
-    # A = Analysis(network=M, 
-    #              simulation=M.simulation, 
-    #              data_list=['spikes'],
-    #              load_areas=None)
-    
-
+def load_and_create_data(M, A):
     """
     Calculate time-averaged population rates and store them in member pop_rates.
     If the rates had previously been stored with the same
@@ -57,8 +30,8 @@ def load_and_create_data(M):
         If set to 'complete', all populations the respective areas
         are included. Defaults to 'complete'.
     """
-    # A.create_pop_rates()
-    subprocess.run(['python3', './figures/Schmidt2018_dyn/compute_pop_rates.py'])
+    A.create_pop_rates()
+    # subprocess.run(['python3', './figures/Schmidt2018_dyn/compute_pop_rates.py'])
     # subprocess.run(['Rscript', '--vanilla', 'compute_bold_signal.R', fn, out_fn])
     print("Computing population rates done")
 
@@ -83,7 +56,7 @@ def load_and_create_data(M):
         If set to 'complete', all populations the respective areas
         are included. Defaults to 'complete'.
     """
-    # A.create_pop_LvR()
+    A.create_pop_LvR()
     print("Computing population LvR done")
     
     
@@ -119,55 +92,55 @@ def load_and_create_data(M):
         - 'alpha_time_window' : time constant of the alpha function
         - 'rect_time_window' : width of the moving rectangular function
     """
-    # A.create_rate_time_series()
+    A.create_rate_time_series()
     print("Computing rate time series done")
     
     
-#     """
-#     Calculate synaptic input of populations and areas using the spike data.
-#     Uses function ah.pop_synaptic_input.
-#     If the synaptic inputs have previously been stored with the
-#     same parameters, they are loaded from file.
+    """
+    Calculate synaptic input of populations and areas using the spike data.
+    Uses function ah.pop_synaptic_input.
+    If the synaptic inputs have previously been stored with the
+    same parameters, they are loaded from file.
 
-#     Parameters
-#     ----------
-#     t_min : float, optional
-#         Minimal time in ms of the simulation to take into account
-#         for the calculation. Defaults to 500 ms.
-#     t_max : float, optional
-#         Maximal time in ms of the simulation to take into account
-#         for the calculation. Defaults to the simulation time.
-#     areas : list, optional
-#         Which areas to include in the calculcation.
-#         Defaults to all loaded areas.
-#     pops : list or {'complete'}, optional
-#         Which populations to include in the calculation.
-#         If set to 'complete', all populations the respective areas
-#         are included. Defaults to 'complete'.
-#     kernel : {'gauss_time_window', 'alpha_time_window', 'rect_time_window'}, optional
-#         Convolution kernel for the calculation of the underlying firing rates.
-#         Defaults to 'binned' which corresponds to a simple histogram.
-#     resolution: float, optional
-#         Width of the convolution kernel. Specifically it correponds to:
-#         - 'binned' : bin width of the histogram
-#         - 'gauss_time_window' : sigma
-#         - 'alpha_time_window' : time constant of the alpha function
-#         - 'rect_time_window' : width of the moving rectangular function
-#     """
-#     A.create_synaptic_input()
-#     print("Computing synaptic input done")
+    Parameters
+    ----------
+    t_min : float, optional
+        Minimal time in ms of the simulation to take into account
+        for the calculation. Defaults to 500 ms.
+    t_max : float, optional
+        Maximal time in ms of the simulation to take into account
+        for the calculation. Defaults to the simulation time.
+    areas : list, optional
+        Which areas to include in the calculcation.
+        Defaults to all loaded areas.
+    pops : list or {'complete'}, optional
+        Which populations to include in the calculation.
+        If set to 'complete', all populations the respective areas
+        are included. Defaults to 'complete'.
+    kernel : {'gauss_time_window', 'alpha_time_window', 'rect_time_window'}, optional
+        Convolution kernel for the calculation of the underlying firing rates.
+        Defaults to 'binned' which corresponds to a simple histogram.
+    resolution: float, optional
+        Width of the convolution kernel. Specifically it correponds to:
+        - 'binned' : bin width of the histogram
+        - 'gauss_time_window' : sigma
+        - 'alpha_time_window' : time constant of the alpha function
+        - 'rect_time_window' : width of the moving rectangular function
+    """
+    A.create_synaptic_input()
+    print("Computing synaptic input done")
     
-    # A.save()
+    A.save()
     
-    # """
-    # Compute BOLD signal for a given area from the time series of
-    # population-averaged spike rates of a given simulation using the
-    # neuRosim package of R (see Schmidt et al. 2018 for more details).
-    # """
-    # try:
-    #     subprocess.run(['python3', './../Schmidt2018_dyn/compute_bold_signal.py'])
-    #     # subprocess.run(['Rscript', '--vanilla', 'compute_bold_signal.R', fn, out_fn])
-    # except FileNotFoundError:
-    #     raise FileNotFoundError("Executing R failed. Did you install R?")
+    """
+    Compute BOLD signal for a given area from the time series of
+    population-averaged spike rates of a given simulation using the
+    neuRosim package of R (see Schmidt et al. 2018 for more details).
+    """
+    try:
+        subprocess.run(['python3', './Schmidt2018_dyn/compute_bold_signal.py'])
+        # subprocess.run(['Rscript', '--vanilla', 'compute_bold_signal.R', fn, out_fn])
+    except FileNotFoundError:
+        raise FileNotFoundError("Executing R failed. Did you install R?")
     
-    # return A
\ No newline at end of file
+    return A
\ No newline at end of file
diff --git a/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_resting_state-checkpoint.py b/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_resting_state-checkpoint.py
index d1970f682c8e4fb7047b9f024c37ba18ce27a018..d6da1ef94e4a74805a035f295948b82230a456b4 100644
--- a/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_resting_state-checkpoint.py
+++ b/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_resting_state-checkpoint.py
@@ -35,8 +35,34 @@ def set_boxplot_props(d):
             markerfacecolor='k', markeredgecolor='k', markersize=3.)
 
 def plot_resting_state(M, data_path):
+    """
+    Analysis class.
+    An instance of the analysis class for the given network and simulation.
+    Can be created as a member class of a multiarea_model instance or standalone.
+
+    Parameters
+    ----------
+    network : MultiAreaModel
+        An instance of the multiarea_model class that specifies
+        the network to be analyzed.
+    simulation : Simulation
+        An instance of the simulation class that specifies
+        the simulation to be analyzed.
+    data_list : list of strings {'spikes', vm'}, optional
+        Specifies which type of data is to load. Defaults to ['spikes'].
+    load_areas : list of strings with area names, optional
+        Specifies the areas for which data is to be loaded.
+        Default value is None and leads to loading of data for all
+        simulated areas.
+    """
+    # Instantiate an analysis class and load spike data
+    A = Analysis(network=M, 
+                 simulation=M.simulation, 
+                 data_list=['spikes'],
+                 load_areas=None)
+    
     # load data
-    A = load_and_create_data(M)
+    load_and_create_data(M, A)
     
     label_spikes = M.simulation.label
     label = M.simulation.label
@@ -154,16 +180,16 @@ def plot_resting_state(M, data_path):
     # M = MultiAreaModel({})
 
     # spike data
-    spike_data = {}
-    for area in areas:
-        spike_data[area] = {}
-        for pop in M.structure[area]:
-            spike_data[area][pop] = np.load(os.path.join(data_path,
-                                                         label_spikes,
-                                                         'recordings',
-                                                         '{}-spikes-{}-{}.npy'.format(label_spikes,
-                                                                                      area, pop)))
-    # spike_data = A.spike_data
+    # spike_data = {}
+    # for area in areas:
+    #     spike_data[area] = {}
+    #     for pop in M.structure[area]:
+    #         spike_data[area][pop] = np.load(os.path.join(data_path,
+    #                                                      label_spikes,
+    #                                                      'recordings',
+    #                                                      '{}-spikes-{}-{}.npy'.format(label_spikes,
+    #                                                                                   area, pop)))
+    spike_data = A.spike_data
     
     # stationary firing rates
     fn = os.path.join(data_path, label, 'Analysis', 'pop_rates.json')
diff --git a/figures/MAM2EBRAINS/M2E_LOAD_DATA.py b/figures/MAM2EBRAINS/M2E_LOAD_DATA.py
index 7e32bac7ece0e1f4c06ee4f0bdec608e25736171..241c3256b704867be05179a45f2ee381dff11c55 100644
--- a/figures/MAM2EBRAINS/M2E_LOAD_DATA.py
+++ b/figures/MAM2EBRAINS/M2E_LOAD_DATA.py
@@ -4,34 +4,7 @@ import matplotlib.pyplot as plt
 
 from multiarea_model import Analysis
 
-def load_and_create_data(M):
-    """
-    Analysis class.
-    An instance of the analysis class for the given network and simulation.
-    Can be created as a member class of a multiarea_model instance or standalone.
-
-    Parameters
-    ----------
-    network : MultiAreaModel
-        An instance of the multiarea_model class that specifies
-        the network to be analyzed.
-    simulation : Simulation
-        An instance of the simulation class that specifies
-        the simulation to be analyzed.
-    data_list : list of strings {'spikes', vm'}, optional
-        Specifies which type of data is to load. Defaults to ['spikes'].
-    load_areas : list of strings with area names, optional
-        Specifies the areas for which data is to be loaded.
-        Default value is None and leads to loading of data for all
-        simulated areas.
-    """
-    # Instantiate an analysis class and load spike data
-    # A = Analysis(network=M, 
-    #              simulation=M.simulation, 
-    #              data_list=['spikes'],
-    #              load_areas=None)
-    
-
+def load_and_create_data(M, A):
     """
     Calculate time-averaged population rates and store them in member pop_rates.
     If the rates had previously been stored with the same
@@ -57,8 +30,8 @@ def load_and_create_data(M):
         If set to 'complete', all populations the respective areas
         are included. Defaults to 'complete'.
     """
-    # A.create_pop_rates()
-    subprocess.run(['python3', './figures/Schmidt2018_dyn/compute_pop_rates.py'])
+    A.create_pop_rates()
+    # subprocess.run(['python3', './figures/Schmidt2018_dyn/compute_pop_rates.py'])
     # subprocess.run(['Rscript', '--vanilla', 'compute_bold_signal.R', fn, out_fn])
     print("Computing population rates done")
 
@@ -83,7 +56,7 @@ def load_and_create_data(M):
         If set to 'complete', all populations the respective areas
         are included. Defaults to 'complete'.
     """
-    # A.create_pop_LvR()
+    A.create_pop_LvR()
     print("Computing population LvR done")
     
     
@@ -119,55 +92,55 @@ def load_and_create_data(M):
         - 'alpha_time_window' : time constant of the alpha function
         - 'rect_time_window' : width of the moving rectangular function
     """
-    # A.create_rate_time_series()
+    A.create_rate_time_series()
     print("Computing rate time series done")
     
     
-#     """
-#     Calculate synaptic input of populations and areas using the spike data.
-#     Uses function ah.pop_synaptic_input.
-#     If the synaptic inputs have previously been stored with the
-#     same parameters, they are loaded from file.
+    """
+    Calculate synaptic input of populations and areas using the spike data.
+    Uses function ah.pop_synaptic_input.
+    If the synaptic inputs have previously been stored with the
+    same parameters, they are loaded from file.
 
-#     Parameters
-#     ----------
-#     t_min : float, optional
-#         Minimal time in ms of the simulation to take into account
-#         for the calculation. Defaults to 500 ms.
-#     t_max : float, optional
-#         Maximal time in ms of the simulation to take into account
-#         for the calculation. Defaults to the simulation time.
-#     areas : list, optional
-#         Which areas to include in the calculcation.
-#         Defaults to all loaded areas.
-#     pops : list or {'complete'}, optional
-#         Which populations to include in the calculation.
-#         If set to 'complete', all populations the respective areas
-#         are included. Defaults to 'complete'.
-#     kernel : {'gauss_time_window', 'alpha_time_window', 'rect_time_window'}, optional
-#         Convolution kernel for the calculation of the underlying firing rates.
-#         Defaults to 'binned' which corresponds to a simple histogram.
-#     resolution: float, optional
-#         Width of the convolution kernel. Specifically it correponds to:
-#         - 'binned' : bin width of the histogram
-#         - 'gauss_time_window' : sigma
-#         - 'alpha_time_window' : time constant of the alpha function
-#         - 'rect_time_window' : width of the moving rectangular function
-#     """
-#     A.create_synaptic_input()
-#     print("Computing synaptic input done")
+    Parameters
+    ----------
+    t_min : float, optional
+        Minimal time in ms of the simulation to take into account
+        for the calculation. Defaults to 500 ms.
+    t_max : float, optional
+        Maximal time in ms of the simulation to take into account
+        for the calculation. Defaults to the simulation time.
+    areas : list, optional
+        Which areas to include in the calculcation.
+        Defaults to all loaded areas.
+    pops : list or {'complete'}, optional
+        Which populations to include in the calculation.
+        If set to 'complete', all populations the respective areas
+        are included. Defaults to 'complete'.
+    kernel : {'gauss_time_window', 'alpha_time_window', 'rect_time_window'}, optional
+        Convolution kernel for the calculation of the underlying firing rates.
+        Defaults to 'binned' which corresponds to a simple histogram.
+    resolution: float, optional
+        Width of the convolution kernel. Specifically it correponds to:
+        - 'binned' : bin width of the histogram
+        - 'gauss_time_window' : sigma
+        - 'alpha_time_window' : time constant of the alpha function
+        - 'rect_time_window' : width of the moving rectangular function
+    """
+    A.create_synaptic_input()
+    print("Computing synaptic input done")
     
-    # A.save()
+    A.save()
     
-    # """
-    # Compute BOLD signal for a given area from the time series of
-    # population-averaged spike rates of a given simulation using the
-    # neuRosim package of R (see Schmidt et al. 2018 for more details).
-    # """
-    # try:
-    #     subprocess.run(['python3', './../Schmidt2018_dyn/compute_bold_signal.py'])
-    #     # subprocess.run(['Rscript', '--vanilla', 'compute_bold_signal.R', fn, out_fn])
-    # except FileNotFoundError:
-    #     raise FileNotFoundError("Executing R failed. Did you install R?")
+    """
+    Compute BOLD signal for a given area from the time series of
+    population-averaged spike rates of a given simulation using the
+    neuRosim package of R (see Schmidt et al. 2018 for more details).
+    """
+    try:
+        subprocess.run(['python3', './Schmidt2018_dyn/compute_bold_signal.py'])
+        # subprocess.run(['Rscript', '--vanilla', 'compute_bold_signal.R', fn, out_fn])
+    except FileNotFoundError:
+        raise FileNotFoundError("Executing R failed. Did you install R?")
     
-    # return A
\ No newline at end of file
+    return A
\ No newline at end of file
diff --git a/figures/MAM2EBRAINS/M2E_visualize_resting_state.py b/figures/MAM2EBRAINS/M2E_visualize_resting_state.py
index d1970f682c8e4fb7047b9f024c37ba18ce27a018..d6da1ef94e4a74805a035f295948b82230a456b4 100644
--- a/figures/MAM2EBRAINS/M2E_visualize_resting_state.py
+++ b/figures/MAM2EBRAINS/M2E_visualize_resting_state.py
@@ -35,8 +35,34 @@ def set_boxplot_props(d):
             markerfacecolor='k', markeredgecolor='k', markersize=3.)
 
 def plot_resting_state(M, data_path):
+    """
+    Analysis class.
+    An instance of the analysis class for the given network and simulation.
+    Can be created as a member class of a multiarea_model instance or standalone.
+
+    Parameters
+    ----------
+    network : MultiAreaModel
+        An instance of the multiarea_model class that specifies
+        the network to be analyzed.
+    simulation : Simulation
+        An instance of the simulation class that specifies
+        the simulation to be analyzed.
+    data_list : list of strings {'spikes', vm'}, optional
+        Specifies which type of data is to load. Defaults to ['spikes'].
+    load_areas : list of strings with area names, optional
+        Specifies the areas for which data is to be loaded.
+        Default value is None and leads to loading of data for all
+        simulated areas.
+    """
+    # Instantiate an analysis class and load spike data
+    A = Analysis(network=M, 
+                 simulation=M.simulation, 
+                 data_list=['spikes'],
+                 load_areas=None)
+    
     # load data
-    A = load_and_create_data(M)
+    load_and_create_data(M, A)
     
     label_spikes = M.simulation.label
     label = M.simulation.label
@@ -154,16 +180,16 @@ def plot_resting_state(M, data_path):
     # M = MultiAreaModel({})
 
     # spike data
-    spike_data = {}
-    for area in areas:
-        spike_data[area] = {}
-        for pop in M.structure[area]:
-            spike_data[area][pop] = np.load(os.path.join(data_path,
-                                                         label_spikes,
-                                                         'recordings',
-                                                         '{}-spikes-{}-{}.npy'.format(label_spikes,
-                                                                                      area, pop)))
-    # spike_data = A.spike_data
+    # spike_data = {}
+    # for area in areas:
+    #     spike_data[area] = {}
+    #     for pop in M.structure[area]:
+    #         spike_data[area][pop] = np.load(os.path.join(data_path,
+    #                                                      label_spikes,
+    #                                                      'recordings',
+    #                                                      '{}-spikes-{}-{}.npy'.format(label_spikes,
+    #                                                                                   area, pop)))
+    spike_data = A.spike_data
     
     # stationary firing rates
     fn = os.path.join(data_path, label, 'Analysis', 'pop_rates.json')
diff --git a/multi-area-model.ipynb b/multi-area-model.ipynb
index f9c882e161bcf23f2fd5e3c001ddee158735a87f..ba9073d59d189e9ff3458ef0496241a4fe4cb079 100644
--- a/multi-area-model.ipynb
+++ b/multi-area-model.ipynb
@@ -570,7 +570,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 18,
    "id": "ae19bcc3",
    "metadata": {
     "tags": []
@@ -583,7 +583,7 @@
      "traceback": [
       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
       "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
-      "Cell \u001b[0;32mIn [16], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mM2E_visualize_resting_state\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m plot_resting_state\n\u001b[0;32m----> 2\u001b[0m plot_resting_state(M, data_path)\n",
+      "Cell \u001b[0;32mIn [18], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mM2E_visualize_resting_state\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m plot_resting_state\n\u001b[0;32m----> 2\u001b[0m plot_resting_state(M, data_path)\n",
       "File \u001b[0;32m~/MAM2EBRAINS/./figures/MAM2EBRAINS/M2E_visualize_resting_state.py:161\u001b[0m, in \u001b[0;36mplot_resting_state\u001b[0;34m(M, data_path)\u001b[0m\n\u001b[1;32m    159\u001b[0m     spike_data[area] \u001b[38;5;241m=\u001b[39m {}\n\u001b[1;32m    160\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m pop \u001b[38;5;129;01min\u001b[39;00m M\u001b[38;5;241m.\u001b[39mstructure[area]:\n\u001b[0;32m--> 161\u001b[0m         spike_data[area][pop] \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[43mos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    162\u001b[0m \u001b[43m                                                     \u001b[49m\u001b[43mlabel_spikes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    163\u001b[0m \u001b[43m                                                     \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mrecordings\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    164\u001b[0m \u001b[43m                                                     \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;132;43;01m{}\u001b[39;49;00m\u001b[38;5;124;43m-spikes-\u001b[39;49m\u001b[38;5;132;43;01m{}\u001b[39;49;00m\u001b[38;5;124;43m-\u001b[39;49m\u001b[38;5;132;43;01m{}\u001b[39;49;00m\u001b[38;5;124;43m.npy\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlabel_spikes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    165\u001b[0m \u001b[43m                                                                                  \u001b[49m\u001b[43marea\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpop\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    166\u001b[0m \u001b[38;5;66;03m# spike_data = A.spike_data\u001b[39;00m\n\u001b[1;32m    167\u001b[0m \n\u001b[1;32m    168\u001b[0m \u001b[38;5;66;03m# stationary firing rates\u001b[39;00m\n\u001b[1;32m    169\u001b[0m fn \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(data_path, label, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAnalysis\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpop_rates.json\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
       "File \u001b[0;32m/srv/main-spack-instance-2305/spack/opt/spack/linux-ubuntu20.04-x86_64/gcc-10.3.0/py-numpy-1.22.4-2oqgru7t5upcffz4fffhepvquuy3hdsh/lib/python3.8/site-packages/numpy/lib/npyio.py:430\u001b[0m, in \u001b[0;36mload\u001b[0;34m(file, mmap_mode, allow_pickle, fix_imports, encoding)\u001b[0m\n\u001b[1;32m    428\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mformat\u001b[39m\u001b[38;5;241m.\u001b[39mopen_memmap(file, mode\u001b[38;5;241m=\u001b[39mmmap_mode)\n\u001b[1;32m    429\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 430\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mformat\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_array\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfid\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallow_pickle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_pickle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    431\u001b[0m \u001b[43m                                 \u001b[49m\u001b[43mpickle_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpickle_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    432\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    433\u001b[0m     \u001b[38;5;66;03m# Try a pickle\u001b[39;00m\n\u001b[1;32m    434\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m allow_pickle:\n",
       "File \u001b[0;32m/srv/main-spack-instance-2305/spack/opt/spack/linux-ubuntu20.04-x86_64/gcc-10.3.0/py-numpy-1.22.4-2oqgru7t5upcffz4fffhepvquuy3hdsh/lib/python3.8/site-packages/numpy/lib/format.py:742\u001b[0m, in \u001b[0;36mread_array\u001b[0;34m(fp, allow_pickle, pickle_kwargs)\u001b[0m\n\u001b[1;32m    739\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype\u001b[38;5;241m.\u001b[39mhasobject:\n\u001b[1;32m    740\u001b[0m     \u001b[38;5;66;03m# The array contained Python objects. We need to unpickle the data.\u001b[39;00m\n\u001b[1;32m    741\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m allow_pickle:\n\u001b[0;32m--> 742\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mObject arrays cannot be loaded when \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    743\u001b[0m                          \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mallow_pickle=False\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    744\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m pickle_kwargs \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m    745\u001b[0m         pickle_kwargs \u001b[38;5;241m=\u001b[39m {}\n",