diff --git a/multiarea_model/default_params.py b/multiarea_model/default_params.py index 15dbba6707ed60c612b65957666d5cf25fbf616d..6ae1ddc139eb6e5f9a699d8bc7ba320d3ae702b8 100644 --- a/multiarea_model/default_params.py +++ b/multiarea_model/default_params.py @@ -62,7 +62,8 @@ network_params = { 'N_scaling': 1., # Scaling of indegrees 'K_scaling': 1., - # Full-scale rates for scaling synaptic weights + # Absolute path to the file holding full-scale rates for scaling + # synaptic weights 'fullscale_rates': None } @@ -146,6 +147,7 @@ connection_params = { # $(replace_cc_input_source)-area-population.npy # (e.g. '$(replace_cc_input_source)-V1-23E.npy') # contain the time series for each population. + # We recommend using absolute paths rather than relative paths. 'replace_cc_input_source': None, # whether to redistribute CC synapse to meet literature value diff --git a/run_example.py b/run_example.py index 8945b41318bfc141cdf5eca49d64cc94280130d5..f9e7df92686b96dbb7f308c64dcc13593476e2ed 100644 --- a/run_example.py +++ b/run_example.py @@ -1,6 +1,9 @@ +import os + from multiarea_model import MultiAreaModel from start_jobs import start_job from config import submit_cmd, jobscript_template +from config import base_path """ Example script showing how to simulate the multi-area model @@ -17,7 +20,7 @@ resources, for instance on a compute cluster. """ d = {} conn_params = {'g': -11., - 'K_stable': 'K_stable.npy', + 'K_stable': os.path.join(base_path, 'K_stable.npy'), 'fac_nu_ext_TH': 1.2, 'fac_nu_ext_5E': 1.125, 'fac_nu_ext_6E': 1.41666667, @@ -68,7 +71,7 @@ neuron_params = {'V0_mean': -150., 'V0_sd': 50.} network_params = {'N_scaling': 0.01, 'K_scaling': 0.01, - 'fullscale_rates': 'tests/fullscale_rates.json', + 'fullscale_rates': os.path.join(base_path, 'tests/fullscale_rates.json'), 'connection_params': conn_params, 'neuron_params': neuron_params}