diff --git a/figures/Schmidt2018_dyn/Fig7_temporal_hierarchy.py b/figures/Schmidt2018_dyn/Fig7_temporal_hierarchy.py
index 2fd8ff6e798ce825871a9c288258b13a1d3d68c5..980a66d6bf142ebce437241433c2eede7e39cc51 100644
--- a/figures/Schmidt2018_dyn/Fig7_temporal_hierarchy.py
+++ b/figures/Schmidt2018_dyn/Fig7_temporal_hierarchy.py
@@ -621,7 +621,7 @@ pl.savefig('Fig7_temporal_hierarchy_mpl.eps')
 
 
 """
-Merge eps files
+Merge surface plots
 """
 pyx.text.set(cls=pyx.text.LatexRunner)
 pyx.text.preamble(r"\usepackage{helvet}")
diff --git a/figures/Schmidt2018_dyn/Fig8_alluvial_sim_exp.eps b/figures/Schmidt2018_dyn/Fig8_alluvial_sim_exp.eps
new file mode 100644
index 0000000000000000000000000000000000000000..4a502a6685292aa4ac64d81a2476c35487cb51b7
--- /dev/null
+++ b/figures/Schmidt2018_dyn/Fig8_alluvial_sim_exp.eps
@@ -0,0 +1,643 @@
+%!PS-Adobe-3.0 EPSF-3.0
+%%Creator: cairo 1.14.6 (http://cairographics.org)
+%%CreationDate: Thu Jun 15 08:56:19 2017
+%%Pages: 1
+%%DocumentData: Clean7Bit
+%%LanguageLevel: 3
+%%BoundingBox: 0 -1 401 402
+%%EndComments
+%%BeginProlog
+save
+50 dict begin
+/q { gsave } bind def
+/Q { grestore } bind def
+/cm { 6 array astore concat } bind def
+/w { setlinewidth } bind def
+/J { setlinecap } bind def
+/j { setlinejoin } bind def
+/M { setmiterlimit } bind def
+/d { setdash } bind def
+/m { moveto } bind def
+/l { lineto } bind def
+/c { curveto } bind def
+/h { closepath } bind def
+/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
+      0 exch rlineto 0 rlineto closepath } bind def
+/S { stroke } bind def
+/f { fill } bind def
+/f* { eofill } bind def
+/n { newpath } bind def
+/W { clip } bind def
+/W* { eoclip } bind def
+/BT { } bind def
+/ET { } bind def
+/pdfmark where { pop globaldict /?pdfmark /exec load put }
+    { globaldict begin /?pdfmark /pop load def /pdfmark
+    /cleartomark load def end } ifelse
+/BDC { mark 3 1 roll /BDC pdfmark } bind def
+/EMC { mark /EMC pdfmark } bind def
+/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
+/Tj { show currentpoint cairo_store_point } bind def
+/TJ {
+  {
+    dup
+    type /stringtype eq
+    { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
+  } forall
+  currentpoint cairo_store_point
+} bind def
+/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
+    cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
+/Tf { pop /cairo_font exch def /cairo_font_matrix where
+      { pop cairo_selectfont } if } bind def
+/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
+      /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
+      /cairo_font where { pop cairo_selectfont } if } bind def
+/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
+      cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
+/g { setgray } bind def
+/rg { setrgbcolor } bind def
+/d1 { setcachedevice } bind def
+%%EndProlog
+%%BeginSetup
+%%BeginResource: font DejaVuSans
+11 dict begin
+/FontType 42 def
+/FontName /DejaVuSans def
+/PaintType 0 def
+/FontMatrix [ 1 0 0 1 0 0 ] def
+/FontBBox [ 0 0 0 0 ] def
+/Encoding 256 array def
+0 1 255 { Encoding exch /.notdef put } for
+Encoding 49 /one put
+Encoding 50 /two put
+Encoding 51 /three put
+Encoding 52 /four put
+Encoding 54 /six put
+Encoding 55 /seven put
+Encoding 65 /A put
+Encoding 67 /C put
+Encoding 68 /D put
+Encoding 69 /E put
+Encoding 70 /F put
+Encoding 72 /H put
+Encoding 73 /I put
+Encoding 76 /L put
+Encoding 77 /M put
+Encoding 79 /O put
+Encoding 80 /P put
+Encoding 83 /S put
+Encoding 84 /T put
+Encoding 86 /V put
+Encoding 97 /a put
+Encoding 100 /d put
+Encoding 108 /l put
+Encoding 112 /p put
+Encoding 116 /t put
+Encoding 118 /v put
+/CharStrings 27 dict dup begin
+/.notdef 0 def
+/V 1 def
+/P 2 def
+/four 3 def
+/t 4 def
+/O 5 def
+/T 6 def
+/M 7 def
+/S 8 def
+/d 9 def
+/I 10 def
+/v 11 def
+/C 12 def
+/A 13 def
+/one 14 def
+/two 15 def
+/l 16 def
+/F 17 def
+/p 18 def
+/a 19 def
+/six 20 def
+/E 21 def
+/H 22 def
+/three 23 def
+/D 24 def
+/L 25 def
+/seven 26 def
+end readonly def
+/sfnts [
+<0001000000090080000300106376742000691d3900001198000001fe6670676d7134766a0000
+1398000000ab676c7966918e5f770000009c000010fc686561640d1447cc0000144400000036
+686865610d9f07880000147c00000024686d747885aa0ebe000014a00000006c6c6f63610000
+f19c0000150c000000706d617870048806710000157c00000020707265703b07f1000000159c
+0000056800020066fe96046605a400030007001a400c04fb0006fb0108057f0204002fc4d4ec
+310010d4ecd4ec301311211125211121660400fc73031bfce5fe96070ef8f272062900010010
+0000056805d5000600b740270411050605031102030606050311040300010002110101004203
+0401af0006040302000505010710d4c4173931002fec3239304b5358071005ed071008ed0710
+08ed071005ed5922b2500801015d406200032a03470447055a037d0383030706000702080409
+06150114021a041a052a002601260229042905250620083800330133023c043c053706480045
+014502490449054706590056066602690469057a007601760279047905750680089800970629
+5d005d21013309013301024afdc6d301d901dad2fdc705d5fb1704e9fa2b000200c90000048d
+05d500080013003a40180195100095098112100a0802040005190d3f11001c09041410fcec32
+fcec11173931002ff4ecd4ec30400b0f151f153f155f15af1505015d01113332363534262325
+2132041514042b0111230193fe8d9a9a8dfe3801c8fb0101fefffbfeca052ffdcf92878692a6
+e3dbdde2fda800020064000004a405d50002000d0081401d010d030d0003030d4200030b07a0
+0501038109010c0a001c0608040c0e10dc4bb00b544bb00d545b58b9000cffc03859d43cc4ec
+32113931002fe4d43cec321239304b5358071004c9071005c9592201402a0b002a0048005900
+690077008a000716012b0026012b0336014e014f0c4f0d5601660175017a0385010d5d005d09
+012103331133152311231121350306fe0201fe35fed5d5c9fd5e0525fce303cdfc33a8fea001
+60c3000000010037000002f2059e0013003840190e05080f03a9001101bc08870a0b08090204
+000810120e461410fc3cc4fc3cc432393931002fecf43cc4ec3211393930b2af1501015d0111
+2115211114163b01152322263511233533110177017bfe854b73bdbdd5a28787059efec28ffd
+a0894e9a9fd202608f013e00000000020073ffe305d905f0000b00170023401306951200950c
+91128c1809190f33031915101810fcecfcec310010e4f4ec10ee300122001110003332001110
+002720001110002120001110000327dcfefd0103dcdc0101feffdc013a0178fe88fec6fec5fe
+870179054cfeb8fee5fee6feb80148011a011b0148a4fe5bfe9efe9ffe5b01a40162016201a5
+00000001fffa000004e905d50007004a400e0602950081040140031c0040050810d4e4fce431
+002ff4ec3230014bb00a5458bd00080040000100080008ffc03811373859401300091f001001
+10021f071009400970099f09095d03211521112311210604effdeecbfdee05d5aafad5052b00
+000100c90000061f05d5000c00bf403403110708070211010208080702110302090a0901110a
+0a09420a070203080300af080b050908030201050a061c043e0a1c00040d10fcecfcec111739
+31002f3cc4ec32111739304b5358071005ed071008ed071008ed071005ed5922b2700e01015d
+405603070f080f09020a15021407130a260226072007260a200a3407350a69027c027b07790a
+80028207820a90021604010b0313011b0323012c032708280934013c035608590965086a0976
+08790981018d0395019b03145d005d13210901211123110123011123c9012d017d017f012dc5
+fe7fcbfe7fc405d5fc0803f8fa2b051ffc000400fae1000000010087ffe304a205f00027007e
+403c0d0c020e0b021e1f1e080902070a021f1f1e420a0b1e1f0415010015a114941895110495
+00942591118c281e0a0b1f1b0700221b190e2d071914222810dcc4ecfcece411123939393931
+0010e4f4e4ec10eef6ee10c6111739304b535807100eed11173907100eed1117395922b20f29
+01015db61f292f294f29035d01152e012322061514161f011e0115140421222627351e013332
+363534262f012e01353424333216044873cc5fa5b377a67ae2d7feddfee76aef807bec72adbc
+879a7be2ca0117f569da05a4c53736807663651f192bd9b6d9e0302fd04546887e6e7c1f182d
+c0abc6e4260000020071ffe3045a06140010001c003840191ab9000e14b905088c0eb8019703
+17040008024711120b451d10fcecf4ec323231002fece4f4c4ec10c4ee30b6601e801ea01e03
+015d0111331123350e0123220211100033321601141633323635342623220603a2b8b83ab17c
+cbff00ffcb7cb1fdc7a79292a8a89292a703b6025ef9eca86461014401080108014461fe15cb
+e7e7cbcbe7e7000100c90000019305d50003002eb700af02011c00040410fc4bb0105458b900
+0000403859ec31002fec3001400d30054005500560058f059f05065d13331123c9caca05d5fa
+2b000001003d0000047f0460000600fb40270311040504021101020505040211030206000601
+1100000642020300bf0506050302010504000710d44bb00a5458b90000004038594bb014544b
+b015545b58b90000ffc03859c4173931002fec3239304b5358071005ed071008ed071008ed07
+1005ed592201408e48026a027b027f02860280029102a402080600060109030904150015011a
+031a0426002601290329042008350035013a033a043008460046014903490446054806400856
+0056015903590450086600660169036904670568066008750074017b037b0475057a06850085
+0189038904890586069600960197029a03980498059706a805a706b008c008df08ff083e5d00
+5d133309013301233dc3015e015ec3fe5cfa0460fc5403acfba0000000010073ffe3052705f0
+00190036401a0da10eae0a951101a100ae04951791118c1a07190d003014101a10fcec32ec31
+0010e4f4ecf4ec10eef6ee30b40f1b1f1b02015d01152e0123200011100021323637150e0123
+2000111000213216052766e782ff00fef00110010082e7666aed84feadfe7a0186015386ed05
+62d55f5efec7fed8fed9fec75e5fd34848019f01670168019f470000000200100000056805d5
+0002000a00c2404100110100040504021105050401110a030a0011020003030a071105040611
+0505040911030a08110a030a4200030795010381090509080706040302010009050a0b10d4c4
+173931002f3ce4d4ec1239304b5358071005ed0705ed071005ed0705ed071008ed071005ed07
+1005ed071008ed5922b2200c01015d40420f010f020f070f080f005800760070008c00090701
+0802060309041601190256015802500c67016802780176027c0372047707780887018802800c
+980299039604175d005d090121013301230321032302bcfeee0225fe7be50239d288fd5f88d5
+050efd1903aefa2b017ffe810000000100e10000045a05d5000a004040154203a00402a00581
+0700a009081f061c03001f010b10d44bb00f5458b9000100403859ecc4fcec31002fec32f4ec
+d4ec304b5358592201b40f030f04025d3721110535253311211521fe014afe990165ca014afc
+a4aa047348b848fad5aa0000000100960000044a05f0001c009e4027191a1b03181c11050400
+110505044210a111940da014910400a00200100a02010a1c171003061d10fc4bb015544bb016
+545b4bb014545b58b90003ffc03859c4d4ecc0c011123931002fec32f4ecf4ec304b53580710
+05ed0705ed01b01c1011173959220140325504560556077a047a05761b87190704000419041a
+041b051c74007606751a731b741c82008619821a821b821ca800a81b115d005d252115213536
+00373e0135342623220607353e01333204151406070600018902c1fc4c73018d33614da7865f
+d3787ad458e80114455b19fef4aaaaaa7701913a6d974977964243cc3132e8c25ca5701dfeeb
+0000000100c100000179061400030022b7009702010800460410fcec31002fec30400d100540
+05500560057005f00506015d13331123c1b8b80614f9ec00000100c90000042305d500090029
+40120695040295008104ad08050107031c00040a10fcec32d4c431002fecf4ec10ee30b20f0b
+01015d13211521112115211123c9035afd700250fdb0ca05d5aafe48aafd3700000200bafe56
+04a4047b0010001c003e401b1ab9000e14b90508b80e8c01bd03bc1d11120b47170400080246
+1d10fcec3232f4ec310010e4e4e4f4c4ec10c4ee304009601e801ea01ee01e04015d25112311
+33153e013332001110022322260134262322061514163332360173b9b93ab17bcc00ffffcc7b
+b10238a79292a7a79292a7a8fdae060aaa6461febcfef8fef8febc6101ebcbe7e7cbcbe7e700
+00000002007bffe3042d047b000a002500bc4027191f0b17090e00a91706b90e1120861fba1c
+b923b8118c170c001703180d09080b1f030814452610fcecccd4ec323211393931002fc4e4f4
+fcf4ec10c6ee10ee11391139123930406e301d301e301f3020302130223f27401d401e401f40
+2040214022501d501e501f50205021502250277027851d871e871f8720872185229027a027f0
+271e301e301f30203021401e401f40204021501e501f50205021601e601f60206021701e701f
+70207021801e801f80208021185d015d0122061514163332363d01371123350e012322263534
+36332135342623220607353e0133321602bedfac816f99b9b8b83fbc88accbfdfb0102a79760
+b65465be5af3f00233667b6273d9b4294cfd81aa6661c1a2bdc0127f8b2e2eaa2727fc000002
+008fffe3049605f0000b0024005840241306000d860c00a01606a01c16a510a00c8922911c8c
+250c22091c191e131c03211f1b2510fcececf4ece4310010e4f4e4fce410ee10ee10ee111239
+304014cb00cb01cd02cd03cd04cb05cb0607a41eb21e025d015d012206151416333236353426
+01152e01232202033e0133320015140023200011100021321602a4889f9f88889f9f01094c9b
+4cc8d30f3bb26be10105fef0e2fefdfeee0150011b4c9b033bbaa2a1bbbba1a2ba0279b82426
+fef2feef575dfeefebe6feea018d0179016201a51e000000000100c90000048b05d5000b002e
+401506950402950081089504ad0a05010907031c00040c10fcec32d4c4c431002fececf4ec10
+ee30b21f0d01015d132115211121152111211521c903b0fd1a02c7fd3902f8fc3e05d5aafe46
+aafde3aa0000000100c90000053b05d5000b002c4014089502ad0400810a0607031c05380901
+1c00040c10fcec32fcec3231002f3ce432fcec30b2500d01015d133311211133112311211123
+c9ca02decacafd22ca05d5fd9c0264fa2b02c7fd39000001009cffe3047305f000280070402e
+0015130a86091f862013a0150da00993061ca020932391068c15a329161c13000314191c2620
+101c03141f09062910fc4bb016544bb014545b58b90009ffc03859c4c4d4ecf4ec1117393931
+0010ece4f4e4ec10e6ee10ee10ee10ee11123930014009641e611f6120642104005d011e0115
+140421222627351e013332363534262b013533323635342623220607353e0133320415140603
+3f91a3fed0fee85ec76a54c86dbec7b9a5aeb6959ea39853be7273c959e6010c8e03251fc490
+ddf22525c33132968f8495a67770737b2426b42020d1b27cab00000200c9000005b005d50008
+0011002e4015009509810195100802100a0005190d32001c09041210fcecf4ec113939393931
+002fecf4ec30b2601301015d0111332000111000212521200011100029010193f40135011ffe
+e1fecbfe42019f01b20196fe68fe50fe61052ffb770118012e012c0117a6fe97fe80fe7efe96
+0000000100c90000046a05d500050025400c0295008104011c033a00040610fcecec31002fe4
+ec304009300750078003800404015d133311211521c9ca02d7fc5f05d5fad5aa000100a80000
+046805d5000600634018051102030203110405044205a0008103050301040100060710fcccc4
+11393931002ff4ec304b5358071005ed071005ed5922014bb0165458bd000700400001000700
+07ffc03811373859401258020106031a05390548056703b000b006075d005d13211501230121
+a803c0fde2d301fefd3305d556fa81052b000000013500b800cb00cb00c100aa009c01a600b8
+00660000007100cb00a002b20085007500b800c301cb0189022d00cb00a600f000d300aa0087
+00cb03aa0400014a003300cb000000d9050200f4015400b4009c01390114013907060400044e
+04b4045204b804e704cd0037047304cd04600473013303a2055605a60556053903c5021200c9
+001f00b801df007300ba03e9033303bc0444040e00df03cd03aa00e503aa0404000000cb008f
+00a4007b00b80014016f007f027b0252008f00c705cd009a009a006f00cb00cd019e01d300f0
+00ba018300d5009803040248009e01d500c100cb00f600830354027f00000333026600d300c7
+00a400cd008f009a0073040005d5010a00fe022b00a400b4009c00000062009c0000001d032d
+05d505d505d505f0007f007b005400a406b80614072301d300b800cb00a601c301ec069300a0
+00d3035c037103db0185042304a80448008f0139011401390360008f05d5019a061407230666
+0179046004600460047b009c00000277046001aa00e904600762007b00c5007f027b000000b4
+025205cd006600bc00660077061000cd013b01850389008f007b0000001d00cd074a042f009c
+009c0000077d006f0000006f0335006a006f007b00ae00b2002d0396008f027b00f600830354
+063705f6008f009c04e10266008f018d02f600cd03440029006604ee00730000140000960000
+b707060504030201002c2010b002254964b040515820c859212d2cb002254964b040515820c8
+59212d2c20100720b00050b00d7920b8ffff5058041b0559b0051cb0032508b0042523e120b0
+0050b00d7920b8ffff5058041b0559b0051cb0032508e12d2c4b505820b0fd454459212d2cb0
+02254560442d2c4b5358b00225b0022545445921212d2c45442d2cb00225b0022549b00525b0
+05254960b0206368208a108a233a8a10653a2d000001000000025eb8369cab945f0f3cf5001f
+080000000000d3d94ef700000000d3d94ef7f7d6fc4c0e5909dc000000080000000100000000
+00010000076dfe1d00000efef7d6fa510e5900010000000000000000000000000000001b04cd
+00660579001004d300c90517006403230037064c007304e3fffa06e700c90514008705140071
+025c00c904bc003d0596007305790010051700e105170096023900c1049a00c9051400ba04e7
+007b0517008f050e00c9060400c90517009c062900c9047500c9051700a80000000000000044
+00000124000001a400000260000002dc00000368000003d8000004d4000005cc000006640000
+06ac000007d00000086800000964000009d400000ad400000b1000000b6400000c0400000d30
+00000e0800000e6800000ec400000fac0000102c00001070000010fc00010000001b0354002b
+0068000c000200100099000800000415021600080004b8028040fffbfe03fa1403f92503f832
+03f79603f60e03f5fe03f4fe03f32503f20e03f19603f02503ef8a4105effe03ee9603ed9603
+ecfa03ebfa03eafe03e93a03e84203e7fe03e63203e5e45305e59603e48a4105e45303e3e22f
+05e3fa03e22f03e1fe03e0fe03df3203de1403dd9603dcfe03db1203da7d03d9bb03d8fe03d6
+8a4105d67d03d5d44705d57d03d44703d3d21b05d3fe03d21b03d1fe03d0fe03cffe03cefe03
+cd9603cccb1e05ccfe03cb1e03ca3203c9fe03c6851105c61c03c51603c4fe03c3fe03c2fe03
+c1fe03c0fe03bffe03befe03bdfe03bcfe03bbfe03ba1103b9862505b9fe03b8b7bb05b8fe03
+b7b65d05b7bb03b78004b6b52505b65d40ff03b64004b52503b4fe03b39603b2fe03b1fe03b0
+fe03affe03ae6403ad0e03acab2505ac6403abaa1205ab2503aa1203a98a4105a9fa03a8fe03
+a7fe03a6fe03a51203a4fe03a3a20e05a33203a20e03a16403a08a4105a096039ffe039e9d0c
+059efe039d0c039c9b19059c64039b9a10059b19039a1003990a0398fe0397960d0597fe0396
+0d03958a410595960394930e05942803930e0392fa039190bb0591fe03908f5d0590bb039080
+048f8e25058f5d038f40048e25038dfe038c8b2e058cfe038b2e038a8625058a410389880b05
+891403880b03878625058764038685110586250385110384fe038382110583fe0382110381fe
+0380fe037ffe0340ff7e7d7d057efe037d7d037c64037b5415057b25037afe0379fe03780e03
+770c03760a0375fe0374fa0373fa0372fa0371fa0370fe036ffe036efe036c21036bfe036a11
+42056a530369fe03687d036711420566fe0365fe0364fe0363fe0362fe03613a0360fa035e0c
+035dfe035bfe035afe0359580a0559fa03580a035716190557320356fe035554150555420354
+150353011005531803521403514a130551fe03500b034ffe034e4d10054efe034d10034cfe03
+4b4a13054bfe034a4910054a1303491d0d05491003480d0347fe0346960345960344fe034302
+2d0543fa0342bb03414b0340fe033ffe033e3d12053e14033d3c0f053d12033c3b0d053c40ff
+0f033b0d033afe0339fe033837140538fa033736100537140336350b05361003350b03341e03
+330d0332310b0532fe03310b03302f0b05300d032f0b032e2d09052e10032d09032c32032b2a
+25052b64032a2912052a25032912032827250528410327250326250b05260f03250b0324fe03
+23fe03220f03210110052112032064031ffa031e1d0d051e64031d0d031c1142051cfe031bfa
+031a42031911420519fe031864031716190517fe031601100516190315fe0314fe0313fe0312
+11420512fe0311022d05114203107d030f64030efe030d0c16050dfe030c0110050c16030bfe
+030a100309fe0308022d0508fe030714030664030401100504fe03401503022d0503fe030201
+1005022d0301100300fe0301b80164858d012b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b002b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b1d00>
+] def
+/f-0-0 currentdict end definefont pop
+%%EndResource
+%%EndSetup
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox: 0 -1 401 402
+%%EndPageSetup
+q 0 -1 401 403 rectclip q
+0.313726 g
+122.5 w
+0 J
+0 j
+[] 0.0 d
+4 M q 0.543916 0 0 -1 0 401.018738 cm
+58.983 339.59 m 729.382 339.59 l S Q
+0.76163 g
+q 0.543916 0 0 -1 0 401.018738 cm
+58.983 62.09 m 729.382 62.09 l S Q
+0.313726 g
+110.250403 w
+q 0.543916 0 0 -1 0 401.018738 cm
+58.983 223.215 m 394.183 223.215 394.183 178.465 729.382 178.465 c S Q
+0 g
+28.082 400.179 4 -159.25 re f
+28.082 232.929 4 -232.75 re f
+396.883 400.179 4 -232.75 re f
+396.883 159.429 4 -159.25 re f
+BT
+9.5 0 0 9.5 -0.0742188 394.093201 Tm
+/f-0-0 1 Tf
+(VP)Tj
+0 -1.25 Td
+(V4t)Tj
+0 -1.25 Td
+[(V)18(OT)]TJ
+0 -1.25 Td
+(MSTd)Tj
+0 -1.25 Td
+(PITv)Tj
+0 -1.25 Td
+(PITd)Tj
+0 -1.25 Td
+[(CITv)]TJ
+0 -1.25 Td
+[(CITd)]TJ
+0 -1.25 Td
+(AITv)Tj
+0 -1.25 Td
+(AITd)Tj
+0 -1.758005 Td
+(V1)Tj
+0 -1.25 Td
+(V2)Tj
+0 -1.25 Td
+(V4)Tj
+0.0107422 -2.480983 Td
+(MT)Tj
+0 -1.25 Td
+(MSTl)Tj
+0 -1.25 Td
+[(F)17(ST)]TJ
+0 -1.25 Td
+(STPp)Tj
+0 -1.25 Td
+[(STP)44(a)]TJ
+0 -1.25 Td
+(46)Tj
+0 -1.25 Td
+[(FEF)]TJ
+0 -1.25 Td
+(TH)Tj
+0 -1.25 Td
+(TF)Tj
+-0.0107422 -2.230345 Td
+(V3)Tj
+0 -1.25 Td
+(V3A)Tj
+0 -1.25 Td
+(PIP)Tj
+0 -1.25 Td
+(PO)Tj
+0 -1.25 Td
+(DP)Tj
+0 -1.25 Td
+(MIP)Tj
+0 -1.25 Td
+(MDP)Tj
+0 -1.25 Td
+(VIP)Tj
+0 -1.25 Td
+(LIP)Tj
+0 -1.25 Td
+(7a)Tj
+24 0 0 24 40.711661 311.818896 Tm
+(1S)Tj
+0.0366211 -8.500001 Td
+(2S)Tj
+13.252123 7.034929 Td
+(1E)Tj
+0.0366211 -8.506592 Td
+(2E)Tj
+ET
+Q q
+32 278.019 365 -156 re W n
+q
+32 278.019 365 -156 re W n
+% Fallback Image: x=32 y=123 w=365 h=156 res=300ppi size=2965950
+[ 0.24 0 0 0.24 32 122.018738 ] concat
+/DeviceGray setcolorspace
+8 dict dup begin
+  /ImageType 1 def
+  /Width 1521 def
+  /Height 650 def
+  /Interpolate false def
+  /BitsPerComponent 8 def
+  /Decode [ 0 1 ] def
+  /DataSource currentfile /ASCII85Decode filter /FlateDecode filter def
+  /ImageMatrix [ 1 0 0 -1 0 650 ] def
+end
+image
+Gb"0WH[&e.IGjVqqlil\dMBEjo]^7cmSe:qdWV7+03u"^>G0>^.grpkZE5BQ66Z\4E2.pe#)
+ 7YuNJ0aL`fUQ/2k:'Z$mITM0$6VC,E6N!'mXW;@p,*LO/t`Z.jN6/k[n,+1V-_UO_3b"3Tn
+ )(5Q<(?PZV;-q46Dgci#L!!$(O^)cH@ZQ2fh!.K>09r,M<-3l`c)B"W0^](VMTSM=D)B4K5
+ B!!$`fQu]@=YP\nqSR1gcV!4`=Q92=#M73:[qfAdJq68c6eeX)?;%Pk?eTJ$m\$,hk5\0@V
+ FC]K&nkB,"$H4IWqYnc*+Q2ke?EC>[]!f'@ENckJlfeTQ?(Xci+iW@edF@N4,nTt*K!(\A?
+ iQtS#G]1Hr$_W]FK#NF03762,I.M<OiD!_g[U<Lm[i;799Gq,nL;lcdfY+6Y!k!t]=S-H^4
+ uL_[?!OQol.l.c^*!4()Ll`6Xt__6;u&Xa%r9jg\]^$bL'2d"TX(!`ZsG=0]6lJYH.1o=&t
+ QPPnY%rX^5+^K>1*$CS7H/V_9$HN_bT4LBmn'NC<Wg"I`[Wn8iNuNbtB9]C%)k:#8jK#n6f
+ Bbsqj`]0lP#?Y/j?5_SCc`Ug"]I.dAOG!Ampm4EP>?7<D1%Zht2Mti;R&'!<FM-^ko)ZYE.
+ `Zq2FTYI2'VRj(GXJ@77FH##u?gnkGDX6MDVghtDmgK3])\/JHpn%BEj1BKipXLp6;LLT9M
+ :B@Kcueo)B?t@Ui<doH@fRq<=sPqKLA-oH)-Q`Ge-Q&*-@^AT:[H<OU`ViG=8G\f)tlM$X5
+ ]V<Dp&sQ=6V+Kquqk:Fe7p64Mku#JFRUF*+)oU=^Gj_,i1R^K0QQM/_JN:36GPT?ksr)L$H
+ LHe*(`=l5a9\"6aRto(f_K-[1(?>Betf,s%T3dNnVZiWoI%P\7UY52p5NqO4GTZ=8jbRF3Y
+ ]Et0;\](#PMEumSHPHT0OIVR3SnupiW`k;OHQ_)$cF/6LM2o9qa:e!8UBW/&9-nERYSOPbV
+ *W0'S[SsjA*;9JJNJE/#3cCjmUd0#5F_<u/B/TNIHGWP13!!_um5b$e':%JM''o+k0dc\%)
+ Z;%1/s:WJT^cuoTsgu6FG&fR)9B&?c^Hl]1ZSSlF=eL)`B1h3FS&7=AFO4h[W_@6\<dYDes
+ /&9qlB2C9]otpE:@K\3H=I"LOHs]d;E<^[t;GU</_@eN7_RRDi!"e!?8sD+.q>mE$HTZ^S(
+ ,\W='<P\cPtI4k!A7jl(&YW=f&>Nc]rQ5*3@tE1l&l_6[5i&H"qp5*4:<m)Hq)YppplX(jX
+ 4)WVep@(GNQ'@/i8^h/>n$6o7\3tgm!i]Sl$7^TeD>J]?%Kb=7D)I#<#g"_8&U;;.JY60BK
+ U?;1@&I(?Oc!^FTs)NSq2\bS0i2=I746hb'#mB$;&bagWQ1<FiAdEjsI-i);qTr=i;"#thj
+ qE>M,5>1q[WPs:(*7/ONNRn0<,?/oUGIL?fo[EK*U"[G9U8&Z#mbuL%X7OTZ+gB`70</4Sk
+ Yq8"Les?N;88ne2%sPe5_d9(EFX.Mr<?a.F9llqcQb4j98o8pV*.J3^"%*i7k-.4Z(5O+#8
+ `Wl7,HYM2i(a+o&JiqN+W4=BAMBS$L$YppOsQmu<5(nHS,EKD!cd>==5NEZk.;3"kR"'E*O
+ ndp5'4ipL`IH7VDP*TQT,i/Lut0f,oo'e1b)n=A'RXG;d0\8!5;i%=+oO2M=<e!f!;Gp*uA
+ L`bqUq#1uY5k*Ufmi%Q->m"bVip7''>IiE"8J-?:1q&+jh1>NZKD!c+9^@fZK(#EYSNOoGI
+ :br.gj"Q1&:A[Z#$B;D`hn%m4m':XF?H3;K'tlMqQOime54C?Z`o8D$dmJo)D>\G9f&ot(S
+ (u5N8P)mg+t"c+Ag$NlacZsR3MDM*U+R%;IuqHVY.%L^_R&[0OI=7?cPTE;m[V>,5C.T"tk
+ jl:((SGn^j"D'V,KmL>^7khp"D.F5@2PE#T9,61C_udM:`82:INhH'\jJ,5<p-jrpn<iX]Z
+ p\bZ_p,5@>kd<l$bHn8R?%0U$%^5amciYj'@E:tX+)1X.A^6G("^&`t@Fd9q?$NQq5Hs+jE
+ SP>Z%](/T;cGFE$?Xc_W0@>1G$jUOi$Ut*R_b:2?DS@7*RMqS$2,pi'$#p6boU7iH7<](si
+ *[)c#egXLGRmki*:+gTK!1!]d"pn%_2=@_/I-XDK&E])[?l4teIlbu0'-IOM%G'"1^<fZM2
+ iEN_SI9K,5@%(4^WNa^!Ape`#_f#q!.Bl%^N)`WQFS>MOR'7:]maApe!TqrJ'OC@C_LcNJA
+ J"+>nbSWj]VJd=oJiLl]T_:]S=5<tfN2b$Z\ucP:+i"Mn/C9+TeQ,)rjc"/QQVe[>(V[3NV
+ OhclBoqWAYc$c,mdUE.s?\LIVP,5>>Tknt5l5Z>T;05hI$@gcC+n9)Q\a*FG24^7MHs2Y8m
+ &U]$%:1"T=7#d0/]OeXJIp@QK&:CUep9L4WJBNBp>P?DE_:M@ZOO'cU.cTLa/@7_4otrNA0
+ &cZLgI;-q!]D7t3q@D^7CQ0;;k\MT6%a=d^8>#dZ#6kZ[X=k6T1m$$"CG@Qo;ri=e9H4f(:
+ k^b3c"&R&fjf6>k*0aE^]pq!Y-FLHK1BbU<(NimLoK9#WRh%CG0X`Rs*B&js<\en-s?HB2!
+ DGV%nnOQeB7n"Q'KE]T/7B\=nd;HPhIpRt<fJ-,T>?[u(+C"5HB8c#JEYcA_N[<B#d6_#m(
+ Jpa0FT1Y#c4_)D[//:qdWK-rbN(MGa`rdb/>,5B/4Ej@KEI*Yi"TS;nA^4@1aN10*P>66L6
+ i1$\tCrW:ZI&@<RK]&?b84`JZo<7YS.UX]WDm#t?&^a<rb[k-=Ym6R>pa0eCd.+I*K>\g%N
+ 8PYX/ZdLQC@QYt7/op]dN\J+45-USo38B;!KnT#Gkl=)\EI%-MQ:`I'G,Z11j':d::=_tBD
+ 16/D$`HW#X2k!q(`_X)[FeWn1d_DkI75&>$dj*dR*GCSc;\YT&1%L!\Id\_8g#?ja[;r21*
+ +gJrcaUh:G%BI<FKQf'EG'#X4PilB_#?jD]MnC\C"_#X2:(m$-h%S]U:\5"Z)kNo2.E`f@"
+ ]b0Lq5nsq8G-3PEkBYQ%.ol"/NH#--6kT:C%*s<[d$:G$:5/K&b?oN[u22HMoCF[9o=hk=H
+ +)CHA]:8^q7eV@B#X4Dj0DU6LD]'dH^c;N>8[Z'I@m7(q!R;qb8:dPXB?M?8$,K,(*(p3LT
+ S=sM!OiVfUr`8jpGG'2_Vum",(bl?fpDWa?sUarU4;V6`Zb+JK,r'ppo:mJ*Y<q],:scZ5C
+ TiO7J(MD^g%!aBsO+R%ebEl"<V>N2u-sgKDd.E^XE2pHs"dZo%UVc^UK0890`si+-r^ar5n
+ @fmQ^kb6L\D\lbFFD&&2@t0A#1`Os0V)m$37GIj7cgc70;H,D(sb"GW5LIPb/.aih#@Zj8i
+ NdQ[EmgW<8ZF_S;Jhp)5Q6L^,2i(/77I\#][aT.JJprLB0hAofYjY=^TPX+_HdIV^/HL<2K
+ Oe5;;!<j$^V!k/6SXqnN(*iX*!XM!<Eq#D[ps*12$WbF5U)ZFA"<XUhBj^PAbo7>'T&]ug+
+ S\JnZI[?)a'L)81P1[q*K7IV6djPLHpE,`+00^:cTcpFc:%:#23ZA8><l3l+,N,?Xn8FFqD
+ kY="-Ol'=R+8Ih)i&]ZBk>I4M:pZ7.@J>`S0ToRgV#erI"1H)B"VJ_+2_C"-5V?ojU!\:\"
+ O3&U`%j+$8'2S(S&pZ#q<6O:8rafJDA)>OP6lDX5DW7h^sk_)G9jSt5W3SbtpVN3TShaFrI
+ jk5!`rm9=IN55"MLfE(&!n;VEA^2J:P`SGk+G^9`gKA[^,d"1trhY#CEj68-<$%f@gK>61n
+ 1A)$sB9WqJT],G73QKk9[JKk$QKFQ(dCk-CcdtdOqK[H1"cu!eRn6:J9MCD*N^TX0K9lfI0
+ )#$HkRI3TmHP+g\$rcar`j+L>rF5io2sTB=a^of[fD5N2#,0e:5fZQ01RYf?O6=p3?;p#p5
+ 5Jl2\=rpJL;N<mQF=X6Y-Y6nc@-S#_(bt"g3hi*?=;3$_<:U&^Y^n0Rj-`BkDfmEg,^_-U[
+ G*Z()1#$592^bElQ$4a[%dn^\K<5W1WE@*bumpI[BZ=VWT!!@#&ir1ta\LBk_FU$c<]oa$>
+ &/"Z^m%j!,L<i5N\)!(i$#n$Z@e)P?T?L0c*H/]PC5:LikG'Bd\jCZg$[Yu$-!+@,YrZ^n+
+ L\oAg3pua!m](XK):U%S-m'!gY2Crg3BB"DgDp^t3V>U:Zg31Gh<DdVB<G[-%gX=qn/"cZ?
+ QJ>l)a&:3FE_#7nA(W$gUEL$nd-f!n0/VjJGd5j0KhI=Z1gp^X8^S>pmD%B$LQ\P_'gCET0
+ gA$0JP]Bh\0hT0Ds/p6N>D>a!`$KRu5%SGO<PLhQ@M^eK=A&:@pWWDcM&R`hGTC^\\&LW#Y
+ ^qe"`oaph*&T>P&o`VhD1"^f;9UJ)8gSs1)O,!\a)X\GqCUGBiPdh2p%/R[EC@0%)0CF!cW
+ NkP\Efk<&t[m+ksXD/77qKRPY=&%G*Di6Ri1*k61c=L754`uKJ=AjX9.%aejQ'ltD2/\2.9
+ :@,LJh<l*,q%rblWIAO8fC%c`T,]AMJ3,RuriCA<:UIWoq:K]D]5,%AhE-_O\B,0:5QokM7
+ .=h`>j:]@m`:LQi)=tEHfTOYbhjU*SEaQP'6'O/_4NS>eCPG>AX2HSI=$2,h!WinEi\D+C4
+ Wo*i&KbK5@]"ai;?/>1S4BAc-@?eftsnOrRf^&*+igPB;Kq,J"^b`pX+cqTBE7$[o%E@EJl
+ 1%.$K9J@sU,idrBWo8cG-+H`H*rq9;$OFVAg:^d5sFJ(D];F!k9Tn;AZCoZ2[>^A4&+DVH9
+ pI)a<AXogZ'm,1B$6%;7-9m(#mBi4<]Z>t!WnjNcob]No`QkfOUbC-;C)P=/)<di;8cg:mm
+ rWgQfc<Ws5`F>tP3(*;qO%0u2n7AFB7B)k!j4+rO4d2umq1'-c$@_VFW:QDF\c"bKrCFnU>
+ OK4R@n-LIAEPZ)&Vdh+huI>@Ik;QKSI)Y[ej&to+$Elfq9#%AgYg$M4q)Z=iB8a-IOYJM4;
+ &,-"9+&O\f,L0A\"_?Uq"Lj2t=5\F,@X.GRk1dRl%r'O2eK^*VB5<?*CB0Y,\RZQ+aQ#W)/
+ MtF0fnSlFW)RFT?d!'DuXnX5S"npSgEnkBip%WS1OZpP2`Z=&aER:&i8nigV\B[_%9n^<;o
+ 0!4GKWplj+883$$BGKcI?>cTOG`VTG/CZ?0(<`d7%*Xd7pjJA?(@kB>beE`Wj`I,^#gm\`)
+ W8WZR9>q7OKO23t#P/u1n3&><4q3P=[MU,;4-/U;K"2A!(P87chTp3G9DO*$#_&Y,^@R`X!
+ 4F$F2W,nda0Cj>fRVo7Ka506@]ffDN8WG=.u37KLPN?(V?jo\Z8h&0-D*XhO:d*5!(Qf[iS
+ cAM$%hW)XDDc_DupPgJIE*;k@Eap[Bfb@C]Uc!i&cjL^?o%F#HT-ENlu$Ya(EP<!,DkS.rt
+ 2K7oCukjTANpI(+'sZCUPHj9+Wkpb'_K""O$'O:S.Hi4CLtiJqc"GRL=(i4G&:EG`S1>9H'
+ 3?O3*=%hAD#3XEGJ%.rr&+Wj5W_&%q)(Mpn)>9IJ[?S!8XArLMhJQ*5/nS!B+\6]D2%DeAt
+ (2mbqK'RQ0PRr4FYdfl'*o6rI+SZRXD^PW,nq!SB^0I&m=LO6F[m1Q/?TO_KX^XX2=<#)C&
+ c;A>EQAC96La*$`E,th@7(]1"2U<>c*r969ji)H?Y7umC8R%$9jfg]?ZItfI6>.G&gR2Bit
+ 61?p])M"&A_ELj8:`Ra9N>#pkm/8iL$5Q2Dft"#ei@*GmcPOChNmn&U^E/g.;AcR_UZ]?SR
+ L_d_LSaYQVdD%i;=DN^H"7#f0S?2PZfWnGu&93eFO`NqoY`6PGhWnC>Jc=fLAA&'Q3l.cUh
+ QC=pl9Ae9@/EQh2bLOA$$"CD79UR[3h%f$+@f)j"jjEM+A+S_D`R%G@^Hl.q&CEko:FA\mT
+ +WlF`p_mRT-Q+g!@5`_@QQ2%]CZ@9'R#Kth-7`/>;rtHJ6U&^_n28-pB2'B:@4[#6,p)!IM
+ *jH87IW1"c"(GrChU[Z"CGM0G1OGP+!r3,3b,J%3pp1%JI'!Hq!e*Z\8)--+o'dOdY66@a]
+ k-ei#@3gc>%BflbFnOh[$lS[0l>*J5HTd.2_1p`bS[1#f/G(2^g&n,Tl.kpa.0[$$"%A.1!
+ XjZ?Uhf!0_dIK&E+FMd_&9gpI,,&:=S"k<]4inmMNMDkq34^B/U25^rpo:t[tG?&lN4TKRm
+ F/De-IJIP=eNo1j-/!%ft1*#kY21fa'Y$>(h%8H&Fi#@\.c/j0Z$i2(B+SeYbabR;15$6$9
+ N^Gue7IUo0QKD(=nt@@]O'0,R[01\*5Xtr!o=.G7#nHdX&&H;/%!EEHO:U^iHn<;1abt,i!
+ d$g!YnY;eKFLZ>L#?H$P.q9XI-?7A@jR:f*Hs)#,6T*FOSnG87/t.)lpC3((jl&dR,gUN"<
+ XZfq$X]J!I>m`=<5Lj^a(!_+S]%Hae-UY#9"`[=;u29cJsusjUlkc_]:g[\8),F,PXfiqsr
+ q>)A^gln<"'@5:`?t5#b#@Och8Y5E"-tTJ1tY<98pRXW4id!U:m(86Jurkh+%/LUU(p_+,D
+ 7r[],I6;7S)Bd*:.393Fu"<V@;,0^uFnt@1XO0k&I3&WUe*eFn1\7-hG%8EdUi562YndF*s
+ KQ7>^/7L3GJ;`ul(kN:!=P/Jji@Pa1n6m?Z047-\.O"T.":I9p"o0//TaHC4bj^/t2Dh*9J
+ r`U1Yeu2B'LD5N3Kh^C-Bpdb@0`C\ZCqR.&:E,^KcRmJ%f$]afHcBQ\*J9`$b6jsfS36eY@
+ 0_7"<TP]\cjuK+Z"]\4([LlJ'-s!>KD`\_d:!&bF>u&(;Yd^Gk[MZ[u_<?L]'b-9DOY^_1r
+ \_hob,D%iGt,3.b!kLO@0ui56_XcZQa(#LXdjE/a>/B<D?Y&:?IYpoXI!juSS1_2"55+6><
+ 1JP6>5SAe`g6U%;3nDQ4Q0A,7.>=aD)_f<]RQ-YG)O9ECT$^g66f7=>95$X4[HLdKi5QV'1
+ mP'*m_br\:,PZ59nLL&5[K+\\529ZE.%d>`#Y+=B-IY2+bJ"I>,5?,BnT,^'>C\sA+"h'+,
+ Pn#4bXM$[3n*7Qm-?nNJe.Sn5M+!jrD*EJ,5;]mbOE&;!HT9;5k#qOnQ2_Ff7Ef)4p3V>eQ
+ ^nJK'N\+KOM#.qO[a]6gu7\l%aX=d=f+;5"&k_6h91[Je,+[TBku0/@^Mo6T!Z;')bT+`ZY
+ $fNq]cFlbFMD*tg:+OO%/:mND:dK'<ea\P`lS+S_%NnT,^?q/@CkLFc,klS-J:is7j0@JjA
+ c;*LL=n0&CmQgtO81!598#X5%nqB_Tc[K%ZeI)s;%LUYKMi#I=ZfpMcd>?3T>(kN:oR/ZT@
+ 'hpZ@i'TiN5J/<<E!4"4Pd4"jb%HqL#7u:(anV@r)<Jbb"<Xp)rfGH,53tc.+YVjdq:rCYH
+ P(WrN/+kf+*Jk'O;`0\T&.=J"<V[Ei@RiD@2je/fbshP/Jmch/d*9eb;FaO_^HV8+S\b5%r
+ VjHF%JPN7e!)Sj$/=<dp(ITi'Rsn?^k<9dp$@Ai'S5!np0sF)'\iP"rj!7>bd.7&:>mZLUR
+ HRBHdN]+%fs/Z[a&j=@VeR((U-D/F:/%Je-E$n@!k$*EY\uTc>sIj%)A^8+<2p%f(,2BHg^
+ b+"C_eEs=^p8.WOlR^b_+#!88E#Jl1qf[--SnrYtb%qW#>3K(:mUl+(t@6D2nO\bP1)M/Kb
+ Z(X19g[^I>Je,8/aIgGp[n$P9LZ6t5S3uk0'Z#Rq398EEj]`urn=`#Uq=Ak,(2G,hciG)So
+ 12'r5k(J&*7:UJ#0Foc#X1)-c%b@CP)iTSHt\.f[gP_j&gI+t#HqQA8+McB_1tcFjBkFJYl
+ _as?9%"Q8+Nnn_1uX.3TOO;o!&>6LNYZ<01,67#f2:FGR\GnFkj6SGm#3Mii\!S\3(XM#X5
+ W6+b'f]Nu8'BRc:K(-28r*5"G+90CE"GMWBEJ6Y!c`[1(/9*PmNN\8,M5[PZ5un=_]Lq9+n
+ JP7`1UN^Nedl`rtZ1P$qW+1gL8KbZT/Ru6,kJ%UND!fQkd,5<hlY@/`mb)V#Y5)bTH>\Blq
+ LA@\ipb5&nL\q;G)<REBi568a[?([92[[BV0t;!B+eIR0K]'`j]S;\J5/VbH&:Bju],"G`B
+ "f,g50UkeIh`C`9gJ2V)@lSD@$n,^Je-m\f>;8>k3J&c_a*"bYUYD'=sNer;&4rb<AE1S(r
+ :uq\8,L^9QkMHn6m^t<*K_l4*i+G0G\jaXG+cVNX.hm`G8RkA$VjMJe+(8)V3X5F#`;tL#B
+ j^*:f;$ZD/.d&&WD.:M(WfHu0FBQnF<KY`dt4Y7#pmn27<.39G"-huhcBO:mTLl6H)>kI>:
+ N2&u3f8+;'IgpN6,>^#^=7dtt3gpN4^maG,P_$B*Wa\N@=43AcB^]G#AWT%qU2%b4D&\a!b
+ 1.F>4,5Ar_gpN6TI%K8rL>W/,nJYFH)""8Uhuh/Af0VOho4Yj!#X5HoL]"N`[A+.^%j\sBY
+ gUF&7h#SC8;%GsFRac1"V?&(0fCl;`].=K"<U_L)k-#$S1cgQ&$1YD[hc'?q=5a)_!9S!["
+ NM7X9_"o((U/kE-8mZ#X5IN2Dd#FZ5r`PHlr_*q3L,RF3^*Z_$?._ODc/?RPH&]5]U[SAg!
+ ^IZD9eUJQ1_")HJ1u^)RDBO;^#61W/(0":.2Q+s,TQMWTgdn:?hon2=dhP9gpZ#?&SchZbo
+ E*.e]sK1!?n\8OkKJe+Z2%8D2Nb@NusI0:W_'6>1`jQH%Ef4>(,86[]>q0$2Vj!oWkUlQ$/
+ g*f1P\$FdUn,Y'7!2?#$m^Rr.".&HGen,oo>sRl[Mn!*6DY[P8lnF#%=N:"pp05R'ha%AeY
+ `=LJ:10gb(kN9/Jqph\aQL5f-P1YJ1H`<m8flG%]+KE56bI^1SG^#>U2M9.%qLWI*@ESi[h
+ $:[1<7::LTTT@kdDW/J/rZ$^=2Xo3U(16hugF/i^PdAE2dki#X2W0*o=IPT3&A#,PZe+=NY
+ h\IP-s@=@)EW)faP_Hh:UsbUG(o]VE!HUpTc#O2piW7E,#%WiE]dO4VDMW]oj40.mgfd2dE
+ S]YmWgRB\^.HukJ/"#e<]ORFOH<]8PGDCYWPC$A[EG:P/CWcia`eCMXgI3]@`dsXD\kua:U
+ ^$-eo&(lccS@^>%SQtJB)[_M<=LuImJ&T<*s8%!-rqZh+CZ*Fin>5?QUFAtJ_$B>G:&+jHR
+ ."kD<*]8W:W5Qco'Y=8s72:;=&1dgSIh@a[1Rf%DX?ZpiF);!$B$immCPH[*rFWSonO"^:A
+ 9FFN/DM^,m5<o+."R8@`q_8YGe8@;dNU4;chl7%u):UC!iW_$c*&f^g'C&po8d(BDpU[?i'
+ &94*EddbNF8(1]:B$T?:\thuf!I.:90!CYZ)*rq:j>joZ._rn14'*Bb-`I8"a:>t"/_LG7<
+ l/jF9'K;YrLCh?/ci9u[c]D3j4Je'hp\W04i'Q;jf\c8A'+7FVAn=%1Q?\72<c=()#>oR]6
+ g#C[c=mb$li8DdOZuhgf?-U>,>7l7u8\Bi?[+-D9JhPL$2`)sE\fq`6^er<uS.Mn%GBW?.S
+ NQHn1qqDkGM1IX&&AJj`qQ]R138c=^9`.3^),5"r!L^=_u>narjn-J"--k[1BTRaiLXsNY]
+ KQbp1I_-'omD.KSQs\X""8U+)i9BSTJ_9RG$rteimSnk*PVGSa(XZOR*X.^^]YrUu^*iZL:
+ !Pki5Ii4.c90)I%jW0>4(VOGD`rmbg1iX1RK=HXk+l4o8Q-^%9FRJ+Vg4rZQ\3kn8BZ-!>U
+ +CRL0+h!<Y-b?OkVkftj5g_T5_7l=Q0,kun*f[lOriJu?)5PXG<p'X+2-e!+1].Yq@e!PpK
+ ""l?TPeUYh5elKt+jhH/;fc/UmslJBI=`!>b.tR5`]NVe:1a*i"/<](Tu2H1kJKYs9!@gtI
+ )'%MN:JoV@EZ*/IS@H^I:aDrJRD:Ri2Dgt-hr5H[%H[>;R0<Ad7nqUNjbPd?+`:oe;0aT"7
+ FW[7<:hDG-eg3JQH;lf%f!9eJhQLaA;:+!Ap;3giE.uG5QURZ_Go!<b'=X@/#BEi3:.\G6p
+ GUKH@TSbRJJY[oP7Y7uqkcmCP>7/D]K/#sKJfdT<HnQJV*eI<&%6a#^fW^H+%oag%Jr"2^u
+ ratLEn)\;r3(Rf3t\=r.XCS7FQe/+-5a+]NM#sKJ.Y!T&a>OVMcV3gG+/Io625C**1kgbTD
+ =%D&9q[e-?,S`fE\!1^bZ+IG1F<pP0lp'(Xg!t0&eVfQ`kid\PkC8'oLaDRlrq\^j[f+Uec
+ \_(`EI:8[""/\u]6el$q?LJZ#)nMooksj6*tU"o^:DPc418t/k"m]C?aKcG>G/YSGe33W:N
+ (0$s1lG3_4bOaA9;W3om\>3pjdT%NUf$`\TPs\I<rXRX.dPqjqb_hhqAjp*cj(R%%c`fjBP
+ L)WrsN+5aDPp^SSld6Wq)C-hr3+6pA;tq9/O"A>e8a"<W_ZL_m>IcO=b\G6ffEpjbK^9`E7
+ G=_@>=+o$R]>Zo^i^$L)1hY32spqV:\+-;DUf4]'3e$F*k^$+fJ'S6id`hB<>\&KdTU4WQQ
+ #X0@OS!/>CM.c#.(Ibe;&g6t"K^?9fiU^VB*b2Mto*@N&V+dN<`qM'u9^Aqd_$B%cQ".5pL
+ %,`bfAL$_Je,rF_KTpV^07f==/)_sBb>_X?Kia8epFm2KnHcFHpD9m4h\OOb760ai?1.4&'
+ /VTjO8FNJ`$X9>NJfHTANiJ'0\m>F:`gbI`lplDr/-D2s5L_NSjmg=?,EG0A4>cQ`u;("%p
+ YWa^9OqBBS-(U721;&UZhI7HHCDh*06"JDphu+M!K')ZQ']j0&&3M(T!s7dpG('pM]WK\fs
+ EXK,3?1S?FR%nJ.IUp@.MqTTaE3_;N:,5?\1^@9KJ>n\_m5A)r(3ZCm1_$=M6?WQR+]P?cq
+ >Wj5k*)I<b#@p\2?5pPC/G?D&*tt1TW/0@6'$)N(DRbp7lfSZs(EF$bLYr8dV/`^eq8`iX#
+ K046?r-?U!J1i<@J+#(nmNEP#@&'0fO)k0octVn,PZeiDVJ$4HIA\CPC00]hug,2Y,i-[%l
+ h[d;[>SFL7H\,h\@MJ:\'W/Je'hX]r*3=n`*c8O3A2`^e$s0$*QU8_B<dS+pii33$c,3b-k
+ TGe-pJU%LV8dn,WdTQ[/O,=(=HFb2p`I"2P4Y[`OOgW[o+N'.I#u_$=cj?bCJpAA<H]q=ZC
+ @61=o%`(0O)$Z>p5nPHRUZ9V"b+37]7b?i-.IT;TF,TeNKHlt3KA_t54keOAYe^l"V/s$RZ
+ #HV.uW=?$0nQE]*_ad/i"d1&(J2Nh=CYa<5b,X\sS*7^S.Kgha?VuOPAXq8_*Y@-E8;,n'k
+ p`dXj<I[mj'=2e+S\4EZ:h3f]^jK",Mc(g6N]=[Hls_\>PA7i7Ann?CV<5+VZnn!pcqaQAR
+ =Qg2g3bO\5dWe+<J?(el:SIAbL#/NjO_i%7DH9^oF2:ZaYJJ\#(DF5XHDPd]_>.0ZrukUCh
+ l]"U3b^Z>>[S(CWe&JL+S!-D;R24MN`h_$:ao?_A.)@ol&nLb93k+S`a2ilZRk5<paM8.YG
+ B)i3DS=a**aFBN^:>rUH_AB-Y4+(eID[KKf.%gH1c1^h-T\[#fD:6k]GRHtcEi585KV-a0@
+ U2qge-9EOtpb:#T3Bp+a%$M]A&:Bj6S#^OF`QjJe#X6I0T\7jTG%.ae"G..?goU$_#r]?L_
+ .6&["<[Khq.^mRNV.><Nnt%*oVTps`hgIc^>9,ZoOZZl#r^b0Y;(V>/XcM<D8u?/QF7&_[)
+ 4t*R2bPPX62Mfps;WaqO\^n`:O&MI/OV(BO_-[p@]Eh3@m3fYSY-2(,fn,SLPe[39KO\i'V
+ e0I&BSmiNq=NTFZVbQ"=h3@FLn5,jK7s_J[(?#X24Q_eo+M)=Mo@FK/^RJe&T5i6G!)7D!h
+ sX$2+GeJ.P$<X_GZl6H(#85;`V_gpt=R>fORiWq^^;,HEJ%uUo=hMcWa[A,@+%g<Z4f*3Tk
+ QO\)6#.QX"<<OD,/$<F+?94$g'LhL7YP@,=<RGYN@TU,XmAPfu6Vb*SYcj7KEMPKUf]a%i0
+ VjK^6TXaC*2Y\fQt0,o/Hd.nfi28k(_`GpUgYIk,@#@&I)mKnI^&!p.Kth)"[n+SW?M%u_$
+ 3[E9D0hSm6)r1AOlj<LLAd]Q1Z-`2)$$@Mp<3'+nuTsI^&#$ZeCcfids&0&U]DN_-Td`Oj5
+ <$;8_Z)52:A2GP@[G'qH[2A1H$L.p9/%pi'5.Bf2qNg1.Q9.tS;@A=$9H"aPCE&@(B,Loq[
+ t+S]nC&arYdB0$r?=&UjW*tI&hWUX=-h&ZhW*,65E3%RDciLGM*C+dI[hJb.:iC\a\_\"nF
+ ?"1VuG:uL=i59`WQ$'oYU)O3FN:e4SN]$>453u6J?K7*(D@>M^0u/CTBETD8q>C1UCV;:1.
+ ?GLlRXu-!A1i>6VtERi%rhasprH"=og>Ge!l^,3f"m>-64eNH'lQ5Cp98.DY_N[9pCVeK0D
+ D&n%s7<S&nG[_T7al$#X6\B^9!3_9A!i+d`#-i(D2%jWlW(HQZ,4^!\=+b+o"S/CH-:_e6l
+ (AkS>(fi+#J#\,Pm-/j<;;kDf0?Gq[?T"<X\c/hX?t0uAL"VMEI)1#6g^_8f.ej%j9t^)eI
+ l1>Qp]_8g#qRictIfV%H#Go1FHJDD5Y&:D\N.ebiCZZ$4B0[b.H_+/n1Z9H?^=ib3$.!1&"
+ ZYW)"NE0.^<>XS>"NY@>g=u$/SOn5@Hpc_sFk9P>83Kp;oPHtbNAGXU%u^E)#1>7aFIr"tj
+ p8[eij3q83)J1JZnHZ+F>DB9n4f!C>jg^Y/@7)Lmdc:]VRd&IhJOrmpm4MI-:Rrr!d9GiT?
+ HjY+o%MK.?;_mG_HL9RN1V[?r9-o"CF6EV3SI&&;PSqDgIeGIX2:651\W_]q;rZL(@.t/Ct
+ *O*bTsM70Hs"GpO3^qEUF+/Rb[3;88TI2H)m1<CZ5("d;<%SIBbo7du[BGjg93%X,-U%kKL
+ pcuXeO\Z6qL9$&OU<7Uhs]I+)g@6>1fi!leV#eh2a94ru<m+q^kUA>0-I(A@a*9k(<]`G2O
+ \_(u_M!2uRK]($fh-KbTrVY$Af6JDFA83=f1m]5S3.`fM]_I>tJ]/SDAs:V]GJO!%I=a,-_
+ NL>79gnVL"e`3diCi?0*]<_s:[j&f./ESS2(os8jW[@52:KJ%SdmP(qZL8Z]]-4(DdD]pcf
+ >9AAGgIT=2;2.I=gp^]]-+ZjF,a3NYePm8PBQcGIO&__*5\Z?=A\gP4LdYY?:MESnJ^A@i#
+ ](Vp(-;K"NW<W*sFcTNC_6&&G_Tett*M]CN3fhl2Oc7/uBQ@*(eng_4MQF+]\7gE:[,0<_C
+ TpN)c.F>5okH0oE<X(L264SYQJfLJ-tG9?_#B/B</ro(kXIe^f&rV3;jDl3P?gltl>=rnd1
+ #=B`1Iqo+)b3XE2-b@ecaX$X's3(H5hLG:N)eQeFf7)nDroYZWr?XWBq^$^iD)][cgH4<i7
+ t:5^5&'u1P/HjJ8j&Bh2=\i\MA0H[CKE-C\kX[RcBd#=J+A*e_6;\!dVjNkj/N%sJ,b)W9^
+ k]n]]8bdoP^NcmE\58hB*.p7K94e+P&r&TXUuXYA3ha"olS,H1tMUV`K"Ls8A"Sp5AkAn#l
+ @WbT?J-n'BJ^pBA/Cgj[SY++/0+h+OrA)&O1g)[q7=VFQCop7CM^<GeQ[rSW2%^V,!=;VuH
+ 2++,R6YO^*8,l'mgIe/1mEc"DG\SHRpe)1ak=g.pgR`XMZs7t-arJD$Zdgc;SrkmKRL\gC0
+ 6iEp$:&_33r)]rt:+E=6$`0GP7iqR'dtcZ&>i`JA!#_1E*?+/-#mTI^p7rZ*O/*KT,c1LaH
+ W0fAljS>L;+^*_?T!1d%n3?`s7QGcV<RM`jL+Sl3f^U=\C0V<n8J(tC]#*CH<6!=M"T]hh-
+ =4]NG[S1jo*.s%>P&AY?`ID!*hE:4ETi<T$n]s/[?AnSI5?*mp#IOprpln!,m/[4+?5!hYE
+ 0He"Y?DT2g-jSY_n_roo3!f04Q&hf1Q%AO?#RBE2.FEdW*cg_]5c#$OH%ba_i*s35Jsn'D%
+ !mr&'aa8Ydbn,N.*Er?fTr=]-Ml/26<p]'?qk24nhoS<JDqqf#"]Y>ZcH%e[5V.Ja'Q.7b"
+ FU^NaYWEPUE[M_)F\Ie.EVWN4Kl^P9j0,sTpW4QQ^\.T@?1N=/5Q'2tc2>'LIH"VmIkCYhh
+ Yr'F=8WN"q5aPnlZ7RO`i=OYeim6oi+idDSI](=71t,_VQUG9M1f4FSa?cU37cgCm(/8.i4
+ n=N+'\OW5PrKZfCOJNi@j\gIs_._Gj>V'X/N,Rjn8Vcp/go?`i=L!4+&J<(Am"IE67Res+[
+ YMs&f>PX/776UI10%r>.f`\k\f45M#+<[dONQ[G\g_K?LIDaXJbl]VDtrpRR5"?g<WK]XFu
+ Wr]-US3=sAZ-lhqcs6K,f>3#YKnN@s<p](m*6XX^UH=cU=JT1XChO_&ZS\^?[@r6(3s5E,4
+ ?Mup6fCjLIY?^2pO"U4d^W,[:kteeGE5PoZqP!lbJ+[&O_b4u$M`eQ6KrVn%=m>Eo0DspUe
+ g1%VMg96R4iuR^!2bZS^T$JZ6\c/c)"U)<Zh="acTW@n@$/&!qtIR:9_X5?HQQPbDtrhpB<
+ H/EE!tA)YQ&n;^Q\\)bN'"*!5K3VBa4SN+%l6NI,K>!'.iGH@?M3e!5K`eru]_GKk:~>
+Q
+Q Q
+showpage
+%%Trailer
+end restore
+%%EOF
diff --git a/figures/Schmidt2018_dyn/Fig8_alluvial_struct_sim.eps b/figures/Schmidt2018_dyn/Fig8_alluvial_struct_sim.eps
new file mode 100644
index 0000000000000000000000000000000000000000..a6705ea7a335dbc64c0b90e60bf05ac48c91313f
--- /dev/null
+++ b/figures/Schmidt2018_dyn/Fig8_alluvial_struct_sim.eps
@@ -0,0 +1,705 @@
+%!PS-Adobe-3.0 EPSF-3.0
+%%Creator: cairo 1.14.6 (http://cairographics.org)
+%%CreationDate: Thu Jul 27 13:08:13 2017
+%%Pages: 1
+%%DocumentData: Clean7Bit
+%%LanguageLevel: 2
+%%BoundingBox: 0 -1 598 403
+%%EndComments
+%%BeginProlog
+save
+50 dict begin
+/q { gsave } bind def
+/Q { grestore } bind def
+/cm { 6 array astore concat } bind def
+/w { setlinewidth } bind def
+/J { setlinecap } bind def
+/j { setlinejoin } bind def
+/M { setmiterlimit } bind def
+/d { setdash } bind def
+/m { moveto } bind def
+/l { lineto } bind def
+/c { curveto } bind def
+/h { closepath } bind def
+/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
+      0 exch rlineto 0 rlineto closepath } bind def
+/S { stroke } bind def
+/f { fill } bind def
+/f* { eofill } bind def
+/n { newpath } bind def
+/W { clip } bind def
+/W* { eoclip } bind def
+/BT { } bind def
+/ET { } bind def
+/pdfmark where { pop globaldict /?pdfmark /exec load put }
+    { globaldict begin /?pdfmark /pop load def /pdfmark
+    /cleartomark load def end } ifelse
+/BDC { mark 3 1 roll /BDC pdfmark } bind def
+/EMC { mark /EMC pdfmark } bind def
+/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
+/Tj { show currentpoint cairo_store_point } bind def
+/TJ {
+  {
+    dup
+    type /stringtype eq
+    { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
+  } forall
+  currentpoint cairo_store_point
+} bind def
+/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
+    cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
+/Tf { pop /cairo_font exch def /cairo_font_matrix where
+      { pop cairo_selectfont } if } bind def
+/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
+      /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
+      /cairo_font where { pop cairo_selectfont } if } bind def
+/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
+      cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
+/g { setgray } bind def
+/rg { setrgbcolor } bind def
+/d1 { setcachedevice } bind def
+%%EndProlog
+%%BeginSetup
+%%BeginResource: font DejaVuSans
+11 dict begin
+/FontType 42 def
+/FontName /DejaVuSans def
+/PaintType 0 def
+/FontMatrix [ 1 0 0 1 0 0 ] def
+/FontBBox [ 0 0 0 0 ] def
+/Encoding 256 array def
+0 1 255 { Encoding exch /.notdef put } for
+Encoding 49 /one put
+Encoding 50 /two put
+Encoding 51 /three put
+Encoding 52 /four put
+Encoding 54 /six put
+Encoding 55 /seven put
+Encoding 65 /A put
+Encoding 67 /C put
+Encoding 68 /D put
+Encoding 69 /E put
+Encoding 70 /F put
+Encoding 72 /H put
+Encoding 73 /I put
+Encoding 76 /L put
+Encoding 77 /M put
+Encoding 79 /O put
+Encoding 80 /P put
+Encoding 83 /S put
+Encoding 84 /T put
+Encoding 86 /V put
+Encoding 97 /a put
+Encoding 100 /d put
+Encoding 108 /l put
+Encoding 112 /p put
+Encoding 116 /t put
+Encoding 118 /v put
+/CharStrings 27 dict dup begin
+/.notdef 0 def
+/F 1 def
+/E 2 def
+/four 3 def
+/six 4 def
+/M 5 def
+/S 6 def
+/T 7 def
+/d 8 def
+/P 9 def
+/p 10 def
+/a 11 def
+/V 12 def
+/t 13 def
+/I 14 def
+/l 15 def
+/three 16 def
+/A 17 def
+/O 18 def
+/D 19 def
+/L 20 def
+/seven 21 def
+/one 22 def
+/two 23 def
+/v 24 def
+/C 25 def
+/H 26 def
+end readonly def
+/sfnts [
+<0001000000090080000300106376742000691d3900001198000001fe6670676d7134766a0000
+1398000000ab676c7966918e5f770000009c000010fc686561640d1447cc0000144400000036
+686865610d9f07880000147c00000024686d747885aa0ebe000014a00000006c6c6f63610000
+e9ec0000150c000000706d617870048806710000157c00000020707265703b07f1000000159c
+0000056800020066fe96046605a400030007001a400c04fb0006fb0108057f0204002fc4d4ec
+310010d4ecd4ec301311211125211121660400fc73031bfce5fe96070ef8f2720629000100c9
+0000042305d50009002940120695040295008104ad08050107031c00040a10fcec32d4c43100
+2fecf4ec10ee30b20f0b01015d13211521112115211123c9035afd700250fdb0ca05d5aafe48
+aafd3700000100c90000048b05d5000b002e401506950402950081089504ad0a05010907031c
+00040c10fcec32d4c4c431002fececf4ec10ee30b21f0d01015d132115211121152111211521
+c903b0fd1a02c7fd3902f8fc3e05d5aafe46aafde3aa000000020064000004a405d50002000d
+0081401d010d030d0003030d4200030b07a00501038109010c0a001c0608040c0e10dc4bb00b
+544bb00d545b58b9000cffc03859d43cc4ec32113931002fe4d43cec321239304b5358071004
+c9071005c9592201402a0b002a0048005900690077008a000716012b0026012b0336014e014f
+0c4f0d5601660175017a0385010d5d005d09012103331133152311231121350306fe0201fe35
+fed5d5c9fd5e0525fce303cdfc33a8fea00160c300000002008fffe3049605f0000b00240058
+40241306000d860c00a01606a01c16a510a00c8922911c8c250c22091c191e131c03211f1b25
+10fcececf4ece4310010e4f4e4fce410ee10ee10ee111239304014cb00cb01cd02cd03cd04cb
+05cb0607a41eb21e025d015d01220615141633323635342601152e01232202033e0133320015
+140023200011100021321602a4889f9f88889f9f01094c9b4cc8d30f3bb26be10105fef0e2fe
+fdfeee0150011b4c9b033bbaa2a1bbbba1a2ba0279b82426fef2feef575dfeefebe6feea018d
+0179016201a51e000000000100c90000061f05d5000c00bf4034031107080702110102080807
+02110302090a0901110a0a09420a070203080300af080b050908030201050a061c043e0a1c00
+040d10fcecfcec11173931002f3cc4ec32111739304b5358071005ed071008ed071008ed0710
+05ed5922b2700e01015d405603070f080f09020a15021407130a260226072007260a200a3407
+350a69027c027b07790a80028207820a90021604010b0313011b0323012c032708280934013c
+035608590965086a097608790981018d0395019b03145d005d13210901211123110123011123
+c9012d017d017f012dc5fe7fcbfe7fc405d5fc0803f8fa2b051ffc000400fae1000000010087
+ffe304a205f00027007e403c0d0c020e0b021e1f1e080902070a021f1f1e420a0b1e1f041501
+0015a11494189511049500942591118c281e0a0b1f1b0700221b190e2d071914222810dcc4ec
+fcece4111239393939310010e4f4e4ec10eef6ee10c6111739304b535807100eed1117390710
+0eed1117395922b20f2901015db61f292f294f29035d01152e012322061514161f011e011514
+0421222627351e013332363534262f012e01353424333216044873cc5fa5b377a67ae2d7fedd
+fee76aef807bec72adbc879a7be2ca0117f569da05a4c53736807663651f192bd9b6d9e0302f
+d04546887e6e7c1f182dc0abc6e426000001fffa000004e905d50007004a400e060295008104
+0140031c0040050810d4e4fce431002ff4ec3230014bb00a5458bd00080040000100080008ff
+c03811373859401300091f00100110021f071009400970099f09095d03211521112311210604
+effdeecbfdee05d5aafad5052b0000020071ffe3045a06140010001c003840191ab9000e14b9
+05088c0eb801970317040008024711120b451d10fcecf4ec323231002fece4f4c4ec10c4ee30
+b6601e801ea01e03015d0111331123350e012322021110003332160114163332363534262322
+0603a2b8b83ab17ccbff00ffcb7cb1fdc7a79292a8a89292a703b6025ef9eca8646101440108
+0108014461fe15cbe7e7cbcbe7e7000200c90000048d05d500080013003a4018019510009509
+8112100a0802040005190d3f11001c09041410fcec32fcec11173931002ff4ecd4ec30400b0f
+151f153f155f15af1505015d011133323635342623252132041514042b0111230193fe8d9a9a
+8dfe3801c8fb0101fefffbfeca052ffdcf92878692a6e3dbdde2fda8000200bafe5604a4047b
+0010001c003e401b1ab9000e14b90508b80e8c01bd03bc1d11120b471704000802461d10fcec
+3232f4ec310010e4e4e4f4c4ec10c4ee304009601e801ea01ee01e04015d2511231133153e01
+3332001110022322260134262322061514163332360173b9b93ab17bcc00ffffcc7bb10238a7
+9292a7a79292a7a8fdae060aaa6461febcfef8fef8febc6101ebcbe7e7cbcbe7e70000000002
+007bffe3042d047b000a002500bc4027191f0b17090e00a91706b90e1120861fba1cb923b811
+8c170c001703180d09080b1f030814452610fcecccd4ec323211393931002fc4e4f4fcf4ec10
+c6ee10ee11391139123930406e301d301e301f3020302130223f27401d401e401f4020402140
+22501d501e501f50205021502250277027851d871e871f8720872185229027a027f0271e301e
+301f30203021401e401f40204021501e501f50205021601e601f60206021701e701f70207021
+801e801f80208021185d015d0122061514163332363d01371123350e01232226353436332135
+342623220607353e0133321602bedfac816f99b9b8b83fbc88accbfdfb0102a79760b65465be
+5af3f00233667b6273d9b4294cfd81aa6661c1a2bdc0127f8b2e2eaa2727fc00000100100000
+056805d5000600b7402704110506050311020306060503110403000100021101010042030401
+af0006040302000505010710d4c4173931002fec3239304b5358071005ed071008ed071008ed
+071005ed5922b2500801015d406200032a03470447055a037d03830307060007020804090615
+0114021a041a052a002601260229042905250620083800330133023c043c0537064800450145
+02490449054706590056066602690469057a0076017602790479057506800898009706295d00
+5d21013309013301024afdc6d301d901dad2fdc705d5fb1704e9fa2b00010037000002f2059e
+0013003840190e05080f03a9001101bc08870a0b08090204000810120e461410fc3cc4fc3cc4
+32393931002fecf43cc4ec3211393930b2af1501015d01112115211114163b01152322263511
+233533110177017bfe854b73bdbdd5a28787059efec28ffda0894e9a9fd202608f013e000000
+000100c90000019305d50003002eb700af02011c00040410fc4bb0105458b9000000403859ec
+31002fec3001400d30054005500560058f059f05065d13331123c9caca05d5fa2b00000100c1
+00000179061400030022b7009702010800460410fcec31002fec30400d100540055005600570
+05f00506015d13331123c1b8b80614f9ec000001009cffe3047305f000280070402e0015130a
+86091f862013a0150da00993061ca020932391068c15a329161c13000314191c2620101c0314
+1f09062910fc4bb016544bb014545b58b90009ffc03859c4c4d4ecf4ec11173939310010ece4
+f4e4ec10e6ee10ee10ee10ee11123930014009641e611f6120642104005d011e011514042122
+2627351e013332363534262b013533323635342623220607353e01333204151406033f91a3fe
+d0fee85ec76a54c86dbec7b9a5aeb6959ea39853be7273c959e6010c8e03251fc490ddf22525
+c33132968f8495a67770737b2426b42020d1b27cab00000200100000056805d50002000a00c2
+404100110100040504021105050401110a030a0011020003030a071105040611050504091103
+0a08110a030a4200030795010381090509080706040302010009050a0b10d4c4173931002f3c
+e4d4ec1239304b5358071005ed0705ed071005ed0705ed071008ed071005ed071005ed071008
+ed5922b2200c01015d40420f010f020f070f080f005800760070008c00090701080206030904
+1601190256015802500c67016802780176027c0372047707780887018802800c980299039604
+175d005d090121013301230321032302bcfeee0225fe7be50239d288fd5f88d5050efd1903ae
+fa2b017ffe81000000020073ffe305d905f0000b00170023401306951200950c91128c180919
+0f33031915101810fcecfcec310010e4f4ec10ee300122001110003332001110002720001110
+002120001110000327dcfefd0103dcdc0101feffdc013a0178fe88fec6fec5fe870179054cfe
+b8fee5fee6feb80148011a011b0148a4fe5bfe9efe9ffe5b01a40162016201a50000000200c9
+000005b005d500080011002e4015009509810195100802100a0005190d32001c09041210fcec
+f4ec113939393931002fecf4ec30b2601301015d011133200011100021252120001110002901
+0193f40135011ffee1fecbfe42019f01b20196fe68fe50fe61052ffb770118012e012c0117a6
+fe97fe80fe7efe960000000100c90000046a05d500050025400c0295008104011c033a000406
+10fcecec31002fe4ec304009300750078003800404015d133311211521c9ca02d7fc5f05d5fa
+d5aa000100a80000046805d5000600634018051102030203110405044205a000810305030104
+0100060710fcccc411393931002ff4ec304b5358071005ed071005ed5922014bb0165458bd00
+070040000100070007ffc03811373859401258020106031a05390548056703b000b006075d00
+5d13211501230121a803c0fde2d301fefd3305d556fa81052b000000000100e10000045a05d5
+000a004040154203a00402a005810700a009081f061c03001f010b10d44bb00f5458b9000100
+403859ecc4fcec31002fec32f4ecd4ec304b5358592201b40f030f04025d3721110535253311
+211521fe014afe990165ca014afca4aa047348b848fad5aa0000000100960000044a05f0001c
+009e4027191a1b03181c11050400110505044210a111940da014910400a00200100a02010a1c
+171003061d10fc4bb015544bb016545b4bb014545b58b90003ffc03859c4d4ecc0c011123931
+002fec32f4ecf4ec304b5358071005ed0705ed01b01c1011173959220140325504560556077a
+047a05761b87190704000419041a041b051c74007606751a731b741c82008619821a821b821c
+a800a81b115d005d25211521353600373e0135342623220607353e0133320415140607060001
+8902c1fc4c73018d33614da7865fd3787ad458e80114455b19fef4aaaaaa7701913a6d974977
+964243cc3132e8c25ca5701dfeeb00000001003d0000047f0460000600fb4027031104050402
+11010205050402110302060006011100000642020300bf0506050302010504000710d44bb00a
+5458b90000004038594bb014544bb015545b58b90000ffc03859c4173931002fec3239304b53
+58071005ed071008ed071008ed071005ed592201408e48026a027b027f02860280029102a402
+080600060109030904150015011a031a0426002601290329042008350035013a033a04300846
+0046014903490446054806400856005601590359045008660066016903690467056806600875
+0074017b037b0475057a068500850189038904890586069600960197029a03980498059706a8
+05a706b008c008df08ff083e5d005d133309013301233dc3015e015ec3fe5cfa0460fc5403ac
+fba0000000010073ffe3052705f000190036401a0da10eae0a951101a100ae04951791118c1a
+07190d003014101a10fcec32ec310010e4f4ecf4ec10eef6ee30b40f1b1f1b02015d01152e01
+23200011100021323637150e01232000111000213216052766e782ff00fef00110010082e766
+6aed84feadfe7a0186015386ed0562d55f5efec7fed8fed9fec75e5fd34848019f0167016801
+9f470000000100c90000053b05d5000b002c4014089502ad0400810a0607031c053809011c00
+040c10fcec32fcec3231002f3ce432fcec30b2500d01015d133311211133112311211123c9ca
+02decacafd22ca05d5fd9c0264fa2b02c7fd3900013500b800cb00cb00c100aa009c01a600b8
+00660000007100cb00a002b20085007500b800c301cb0189022d00cb00a600f000d300aa0087
+00cb03aa0400014a003300cb000000d9050200f4015400b4009c01390114013907060400044e
+04b4045204b804e704cd0037047304cd04600473013303a2055605a60556053903c5021200c9
+001f00b801df007300ba03e9033303bc0444040e00df03cd03aa00e503aa0404000000cb008f
+00a4007b00b80014016f007f027b0252008f00c705cd009a009a006f00cb00cd019e01d300f0
+00ba018300d5009803040248009e01d500c100cb00f600830354027f00000333026600d300c7
+00a400cd008f009a0073040005d5010a00fe022b00a400b4009c00000062009c0000001d032d
+05d505d505d505f0007f007b005400a406b80614072301d300b800cb00a601c301ec069300a0
+00d3035c037103db0185042304a80448008f0139011401390360008f05d5019a061407230666
+0179046004600460047b009c00000277046001aa00e904600762007b00c5007f027b000000b4
+025205cd006600bc00660077061000cd013b01850389008f007b0000001d00cd074a042f009c
+009c0000077d006f0000006f0335006a006f007b00ae00b2002d0396008f027b00f600830354
+063705f6008f009c04e10266008f018d02f600cd03440029006604ee00730000140000960000
+b707060504030201002c2010b002254964b040515820c859212d2cb002254964b040515820c8
+59212d2c20100720b00050b00d7920b8ffff5058041b0559b0051cb0032508b0042523e120b0
+0050b00d7920b8ffff5058041b0559b0051cb0032508e12d2c4b505820b0fd454459212d2cb0
+02254560442d2c4b5358b00225b0022545445921212d2c45442d2cb00225b0022549b00525b0
+05254960b0206368208a108a233a8a10653a2d000001000000025eb8369cbaf45f0f3cf5001f
+080000000000d3d94ef700000000d3d94ef7f7d6fc4c0e5909dc000000080000000100000000
+00010000076dfe1d00000efef7d6fa510e5900010000000000000000000000000000001b04cd
+0066049a00c9050e00c9051700640517008f06e700c90514008704e3fffa0514007104d300c9
+051400ba04e7007b0579001003230037025c00c9023900c10517009c05790010064c00730629
+00c9047500c9051700a8051700e10517009604bc003d05960073060400c90000000000000044
+00000098000000f8000001b40000028c0000038800000480000004f000000588000006080000
+06a8000007d4000008b40000093000000978000009b400000a9c00000b9800000c2400000ca4
+00000ce800000d7400000de400000ee400001008000010a0000010fc00010000001b0354002b
+0068000c000200100099000800000415021600080004b8028040fffbfe03fa1403f92503f832
+03f79603f60e03f5fe03f4fe03f32503f20e03f19603f02503ef8a4105effe03ee9603ed9603
+ecfa03ebfa03eafe03e93a03e84203e7fe03e63203e5e45305e59603e48a4105e45303e3e22f
+05e3fa03e22f03e1fe03e0fe03df3203de1403dd9603dcfe03db1203da7d03d9bb03d8fe03d6
+8a4105d67d03d5d44705d57d03d44703d3d21b05d3fe03d21b03d1fe03d0fe03cffe03cefe03
+cd9603cccb1e05ccfe03cb1e03ca3203c9fe03c6851105c61c03c51603c4fe03c3fe03c2fe03
+c1fe03c0fe03bffe03befe03bdfe03bcfe03bbfe03ba1103b9862505b9fe03b8b7bb05b8fe03
+b7b65d05b7bb03b78004b6b52505b65d40ff03b64004b52503b4fe03b39603b2fe03b1fe03b0
+fe03affe03ae6403ad0e03acab2505ac6403abaa1205ab2503aa1203a98a4105a9fa03a8fe03
+a7fe03a6fe03a51203a4fe03a3a20e05a33203a20e03a16403a08a4105a096039ffe039e9d0c
+059efe039d0c039c9b19059c64039b9a10059b19039a1003990a0398fe0397960d0597fe0396
+0d03958a410595960394930e05942803930e0392fa039190bb0591fe03908f5d0590bb039080
+048f8e25058f5d038f40048e25038dfe038c8b2e058cfe038b2e038a8625058a410389880b05
+891403880b03878625058764038685110586250385110384fe038382110583fe0382110381fe
+0380fe037ffe0340ff7e7d7d057efe037d7d037c64037b5415057b25037afe0379fe03780e03
+770c03760a0375fe0374fa0373fa0372fa0371fa0370fe036ffe036efe036c21036bfe036a11
+42056a530369fe03687d036711420566fe0365fe0364fe0363fe0362fe03613a0360fa035e0c
+035dfe035bfe035afe0359580a0559fa03580a035716190557320356fe035554150555420354
+150353011005531803521403514a130551fe03500b034ffe034e4d10054efe034d10034cfe03
+4b4a13054bfe034a4910054a1303491d0d05491003480d0347fe0346960345960344fe034302
+2d0543fa0342bb03414b0340fe033ffe033e3d12053e14033d3c0f053d12033c3b0d053c40ff
+0f033b0d033afe0339fe033837140538fa033736100537140336350b05361003350b03341e03
+330d0332310b0532fe03310b03302f0b05300d032f0b032e2d09052e10032d09032c32032b2a
+25052b64032a2912052a25032912032827250528410327250326250b05260f03250b0324fe03
+23fe03220f03210110052112032064031ffa031e1d0d051e64031d0d031c1142051cfe031bfa
+031a42031911420519fe031864031716190517fe031601100516190315fe0314fe0313fe0312
+11420512fe0311022d05114203107d030f64030efe030d0c16050dfe030c0110050c16030bfe
+030a100309fe0308022d0508fe030714030664030401100504fe03401503022d0503fe030201
+1005022d0301100300fe0301b80164858d012b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b002b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b1d00>
+] def
+/f-0-0 currentdict end definefont pop
+%%EndResource
+%%BeginResource: font DejaVuSans-Bold
+11 dict begin
+/FontType 42 def
+/FontName /DejaVuSans-Bold def
+/PaintType 0 def
+/FontMatrix [ 1 0 0 1 0 0 ] def
+/FontBBox [ 0 0 0 0 ] def
+/Encoding 256 array def
+0 1 255 { Encoding exch /.notdef put } for
+Encoding 32 /space put
+Encoding 43 /plus put
+Encoding 68 /D put
+Encoding 69 /E put
+Encoding 70 /F put
+Encoding 80 /P put
+Encoding 86 /V put
+Encoding 97 /a put
+Encoding 100 /d put
+Encoding 101 /e put
+Encoding 105 /i put
+Encoding 108 /l put
+Encoding 109 /m put
+Encoding 110 /n put
+Encoding 111 /o put
+Encoding 114 /r put
+Encoding 115 /s put
+Encoding 116 /t put
+Encoding 117 /u put
+Encoding 118 /v put
+Encoding 121 /y put
+/CharStrings 22 dict dup begin
+/.notdef 0 def
+/P 1 def
+/o 2 def
+/l 3 def
+/y 4 def
+/s 5 def
+/e 6 def
+/n 7 def
+/r 8 def
+/space 9 def
+/d 10 def
+/a 11 def
+/D 12 def
+/t 13 def
+/m 14 def
+/E 15 def
+/v 16 def
+/i 17 def
+/u 18 def
+/plus 19 def
+/V 20 def
+/F 21 def
+end readonly def
+/sfnts [
+<000100000009008000030010637674203eb9310800000e18000002546670676d5b026bf00000
+106c000000ac676c79662a32e3cc0000009c00000d7c686561640e2547990000111800000036
+686865610eaf07870000115000000024686d747872220a5400001174000000586c6f63610000
+9fcc000011cc0000005c6d617870065b062d0000122800000020707265707c61a2e700001248
+000007a700020066fe96046605a400030007001fbc00040126000000060126b6010805890204
+002fc4d4ec310010d4ecd4ec301311211125211121660400fc73031bfce5fe96070ef8f27206
+29000000000200bc0000058905d5000a0013003140160cae070bae008d09130d070108102d04
+0b081600031410fcec32d4ec113939393931002ff4ecd4ec30b2001501015d13212004151404
+21231121011133323635342623bc027f011d0131fecffee3fefe7f0181d5707a7a7005d5fdea
+ebfdfdfa04befe5f6d64646c000000020058ffe30527047b000b0017002d401306a11200a10c
+ca12981809420f4c0342153b1810fcecfcec310010e4f4ec10ee30b637133f19471303015d01
+220615141633323635342603200011100021200011100002c1777d7d77757c7c7501210145fe
+bbfedffedefeb90147037baba1a1ababa1a1ab0100fec8feecfeecfec8013801140114013800
+0000000100ac0000021206140003001eb700a302010d00100410fcec31002fec304009500560
+057005800504015d13211121ac0166fe9a0614f9ec00000000010019fe4605120460000f0136
+40430f1d000f05040b0c0d030e1d050504031d040504021d0102050504021d03020f000f011d
+00000f250e0a021005000a9f08da0300b3100f0e0b0908050302010904001010d44bb00a544b
+b012545b4bb014545b58b9000000403859c41739310010e432f4ec113912391139304b535807
+1005ed071008ed071008ed071005ed071005ed17390708ed59220140a4000200021002100220
+0240025002650274028602800294029002a002b402b002b002b002c002c002d402d002e002e0
+0218040109030505050605070508160115051506150724052406240735003501380336063607
+390e390f450045014a034a044505450667026506860286058606880d880e970296059606990d
+990ea802aa03aa04a90ea90fb501bc03b804b009b00abf0bb90db90ec802cb0dcb0ec90fd602
+e502395d005d1321090121010e012b01353332363f01190166012d01000166fe2947bd9bcf70
+5b53170a0460fd0802f8fb36bb95eb3a4b1f00000001006affe30462047b002700dc40400d0c
+020e0b361e1f1e050607080905040a361f1f1e250a0b1e1f041500cc01d40414cc15d4189f11
+049f25ca1198281e0a0b1f1b0700531b520e140750224d2810fcecc4d4ece411123939393931
+0010e4f4ec10fef5ee10f5ee121739304b535807100eed11173907100eed1117395922b2080b
+01015d405e0909090a090b0b0c0b0d090f05231a0c1a0d1a0e180f2c082e092e0a2e0b2e0c2e
+0d292039083b093b0a3b0b3a0c3a0d4b094a0a4a0b4a0c480d770c770dba08ba09ba0aba0bba
+0cba0d250e060e070e080e090e0a0d0b370d3f295f29095d005d01112e012322061514161f01
+041615140421222627111e013332363534262f012e01353436333216041773d65f66634b613f
+0113befef8fefa6fed7d6be174696a496d3fefc0f4fc63da043dfef0303033352b2e0b0923a0
+abb3b42323011034343a39302f0d081ea2a5b2ac1e0000020058ffe3050a047b0014001b0043
+40210015d80109cc08d4059f0c01d7189f12ca0c981c1b150208150d0044020d0f3b1c10fcec
+f4ecc4111239310010e4f4ece410fef4ee10ee3930b42f1d3f1d02015d0115211e0133323637
+110e0123200011100021200005342623220607050afcbb0d9c8c71ed7d7ffe7ffed0feaf014b
+01220108013dfe9077606882100233667e7e4344feec3031013501170112013afec293667d75
+6e000000000100ac00000512047b0017003540180d0400010adb12d015ca10b30e01020d0047
+110d0d0f101810fcec32f4ec31002f3ce4f4e4ec1139393930b46019801902015d0111213511
+3426272e012322061511211121153e013332160512fe980d1015482e7080fe9a016651b66ec2
+c902aafd566f019b916e1a2327ad99fdd90460a4625dee000000000100ac000003ec047b0011
+00374016110e0906070003c00b940eca09b3070a060d0008101210fc4bb0135458b90008ffc0
+3859c4ec3231002fe4f4e4fcc4113911123930012e012322061511211121153e013332161703
+ec2f5d2f8a95fe9a016645b37d122a28032f1615b1a5fdfc0460b86e650305000002005cffe3
+050e06140010001c0038401b17a100d00e11a105d008980eca01a3031404000d02401a420b3b
+1d10fcecf4ec323231002fece4f4e4ec10e4ee30b44f1e601e02015d0111211121350e012322
+0011100033321603323635342623220615141603a60168fe984ab275cffef6010acf74b3a273
+79797372797903bc0258f9eca2635c01490103010301495dfcc9a8a0a0a8a8a0a0a800000002
+0058ffe304c5047b000a0025009d402a090600191f0b00d217cf069f0ed01120cc1fcb1c9f23
+ca11980c00231703180d090d0b3d1f030d143b2610fcecc4f4ec32321139393931002fe4f4fc
+f4ec10e6eef6ee39123911123930404c2f273d203d213f274d204d215d205d216e206e217e20
+7e2170278c208c219d209d21ad20ad21bd20bd2115321e301f431e401f531e501f631e601f85
+1e801f931e901fa21ea01fb21eb01f105d015d0122061514163332363d01251121350e012322
+26353424213335342623220607113e0133200402a270715b51658a0169fe9748b481aed9010f
+0122d3868e73c65573e874012f010d01f84c4a444d916d2987fd81a6665dcba2c5b81c554f2e
+2e01111c1def0000000200bc0000063905d500080017002e401500c0098d01c0160802160a00
+052d102e001609031810fcecfcec113939393931002fecf4ec30b2501901015d011133323635
+342623012120041716121514020706042901023d8aecf9f8edfdf501960154014d7769666669
+78feb0feb0fe6a04b2fc71eadfdee80123617465fef8a7a9fef7657461000001001b000003a4
+059e0013006d401a0e05080f03a11101b308a1000a080b09020904000d10120e541410fc4bb0
+0f544bb010545b4bb011545b4bb012545b58b9000e004038593cc4fc3cc4c412393931002fc4
+ecf43cec32113939300140183f003f1302000200030f100f1150025003501560026003095d00
+5d01112111211114163b011121222635112311331102330171fe8f3e5cb8fecdd4b1b2b2059e
+fec2ff00fe254e37ff00b1d401db0100013e0000000100aa000007b4047b0025006940291b15
+1209040700200607180fdb20d02303ca1eb31c13070014120c080d0648140d12481f1b0d1d10
+2610fc4bb00f5458b9001d00403859fc3cfcecfcec3911123931002f3c3ce4f43ce4ec321139
+11391117393001400f1f2730275027702780279027af27075d013e01333216151121113e0135
+34262322060711211134262322061511211121153e0133321604ba44bb70c1cafe980101464e
+666f02fe9840526770fe98016842ab6774b203a6686deee3fd5602480d1c1a776ba89ffdda02
+48ba6ba99dfdd90460a45f6070000000000100bc000004e105d5000b0030401404c006be02c0
+008d08c00a01050907031600030c10fcec32d4c4c431002fecf4ecf4ec30b6100d500d700d03
+015d132111211121112111211121bc040ffd720267fd9902a4fbdb05d5feddfeeafeddfeaafe
+dd000001001f000005190460000600d34027031d040504021d0102050504021d030206000601
+1d00000625020300df0506050302010504000710d4b49f001f00025dc4173931002fec323930
+4b5358071005ed071008ed071008ed071005ed592201407c0002000210021002200230024002
+5602660280029002a002b002b002b002b002c002c002d002d002e002e002e002f002f0021905
+0002010d030a04150013011c031a04260024012b032904360034013903390430084600460149
+034904600878068701880387058806960096019903990495059a06a803b601b903245d005d13
+2109012101211f0166011701160167fe47fe770460fcfa0306fba0000000000200ac00000212
+0614000300070029400e06dd00b304a30205010d0400100810fc3cec3231002fecf4ec304009
+500960097009800904015d1321112111211121ac0166fe9a0166fe9a0460fba00614fedc0000
+000100a0ffe3050604600019003b401b0f0300010cdb14d017981001b312060200130f0d1147
+020d00101a10fcecf4ec3211123931002fe432f4e4ec1139393930b4601b801b02015d131121
+151402151416171e013332363511211121350e01232226a00168020e1116472e70800166fe9a
+51b56dc2cb01b402ac705bfeed2e87771b2326ac990229fba0a2625dee00000100d9000005db
+0504000b00224010000703a70901a60508040012020a060c10d43cc4fc3cc431002ff43cfc3c
+c43001112115211123112135211103d1020afdf6eefdf6020a0504fdf4ecfdf4020cec020c00
+0001000a0000062705d5000600834027031d040504021d0102050504021d0002060006011d00
+000625020300c10506050302010504000710d4b48f001f00025dc4173931002fec3239304b53
+58071005ed071008ed071008ed071005ed592201402c000210022002b0020407010803170118
+03180417051f082008470047014803480445054a06570158038f08115d005d13210901210121
+0a0183018c018b0183fdd7fe3505d5fbb2044efa2b000000000100bc000004cb05d50009002b
+401104c006be02c0008d08050107031600030a10fcec32d4c431002ff4ecf4ec30b6100b500b
+700b03015d13211121112111211121bc040ffd720267fd99fe7f05d5feddfeeafeddfd870166
+0133016600bc00e90000013d00a200fa031f00020002006601660002000200ac015400ec00bc
+006201660181048501540166016d04a400020166007f04cd0000000201330062007100000025
+04a401bc00ba00e500660181018d0548055a0166016d000000000002000200f605c301f00539
+02390058046d043d04b2048104b2016601750466048100b00466043902d1049c047b04cf047b
+005801330166014c0166014c000200ac009a014a0123009a029a01440119014402cd00c10000
+0166013f019a013b05cb05cb00d500d5015000ac00ac0077020a01c701f2012f015801b20123
+00f600f6011f012f0135023501ee01e70133009800d10358050a009a008f0112009800bc00cd
+00e500e500f2007304000166008f05d5022b05d500c300e100d700e50000006a01020000001d
+032d05d505d505f000a8006a00ec00e1010205d506140721046602f800ec018302a602f80123
+010201020112011f031f005e03cd046004c7048900ec01bc00ba01020333031f03420333035c
+0112011f05d5019a009a00e106660179046004600460047b000000ec02c302b802cd00be00dd
+00d50000006a025c027b029a00dd01ae01ba01120000008501ae04600762041b009a069a0458
+00ee009a029a00d102cd019a015005cb05cb008b008b063100f6040600f0034c016004a800c1
+0000002505c101000121074a06120096014a078300a800000337007b0014000000c9010005c1
+05c105c105c101000108061d00960427039e00ec0102027d0133009800d10358017900cd0239
+0362009c009c009c009301b8009300b80073000014000326b707060504030201002c2010b002
+254964b040515820c859212d2cb002254964b040515820c859212d2c20100720b00050b00d79
+20b8ffff5058041b0559b0051cb0032508b0042523e120b00050b00d7920b8ffff5058041b05
+59b0051cb0032508e12d2c4b505820b80128454459212d2cb002254560442d2c4b5358b00225
+b0022545445921212d2c45442d2cb00225b0022549b00525b005254960b0206368208a108a23
+3a8a10653a2d0001000000025eb8518cf5005f0f3cf5001f080000000000d3d94ee800000000
+d3d94ee8f772fcae0fcd096500010008000000010000000000010000076dfe1d00001021f772
+f9320fcd00010000000000000000000000000000001604cd006605dd00bc057f005802be00ac
+0537001904c3006a056d005805b200ac03f200ac02c9000005ba005c0566005806a400bc03d3
+001b085600aa057700bc0537001f02be00ac05b200a006b400d90631000a057700bc00000000
+0000004c000000c8000001540000019000000308000004600000050c000005940000060c0000
+060c000006a8000007bc00000844000008f8000009d800000a3c00000b3c00000b9000000c20
+00000c7400000d2400000d7c000100000016034e002b0078000c0002001000400008000005ed
+02210008000441840280012600fe000301250011000301240121003a0005012400fa00030123
+0016000301220121003a0005012200fe00030121003a0003012000fa0003011f00bb0003011e
+00640003011d00fe0003011c00190003011b001e0003011a00fe0003011900fe0003011800fe
+0003011700fe0003011600fe000301150114000e0005011500fe00030114000e0003011300fe
+0003011200fe0003010f010e007d0005010f00fe0003010e007d0003010d010c008c0005010d
+00fe0003010d00c00004010c010b00590005010c008c0003010c00800004010b010a00260005
+010b00590003010b00400004010a00260003010900fe0003010800fe00030107000c00030107
+008000040106b2972e054113010600fa0003010500fa0003010400fe00030103001900030102
+00fa0003010100fa0003010040ff7d03ff3e03fefe03fcfb2c05fcfe03fb2c03fafe03f9f847
+05f97d03f84703f7fa03f6fe03f5fe03f4fe03f3bb03f2fe03f1fe03f0fe03ef1e03eefe03ed
+ec0a05edfe03ec0a03ec4004ebea0a05eb3203ea0a03e9fa03e8911605e8fe03e7fa03e6fa03
+e5911605e5fe03e4fe03e3fe03e2fe03e1fe03e0fe03dffe03defa03dddc1805dd6403dc1803
+dba01e05db6403dad92505dafa03d92503d8d12505d8fa03d7d61405d71603d6d51005d61403
+d51003d4d30b05d42003d30b03d2d12505d2fa03d1911605d12503d0940c05d02303cfce1405
+cf2603cecd1205ce1403cd1203cc911605cc1d03cb1403cac9bb05cafe03c9c85d05c9bb03c9
+8004c840ffc72505c85d03c84004c72503c6fe03c56403c4901005c4fe03c31c03c2fe03c1fe
+03c0bf3a05c0fa03bfad1b05bf3a03bebd1a05be3203bdbc1105bd1a03bcbb0f05bc1103bbba
+0c05bb0f03ba0c03b9911605b9fe03b8fe03b71503b61203b5fe03b4fe03b3fe03b21703b119
+03b01603afad1b05affa03aead1b05aefa03ad911605ad1b03ac911605ac7d03abfe03aa2603
+a9fe03a8fe03a7fe03a6fe03a50a03a4fe03a3a20e05a3fe03a20e03a24004a1a01e05a1fa03
+a0911605a01e039f9116059ffa039e940c059e1c039dfe039c9bbb059cfe039b9a5d059bbb03
+9b80049a8f25059a5d039a400499fe0398972e0598fe03972e0396911605961e40ff0395940c
+05952003940c0393911605934b039291160592fe03919010059116039010038f25038efe038d
+fe038cfe038bfe038afe0389fe038887250588fe0387250386fe0385fe0384320383960382fe
+0381fe038019037f0a037efe037dfe037cfe037bfa037afa0379fe037776a60577fe0376a603
+75741b0575fa03741b0373fa03727d0371fe03706f2c056f2c036efa036dfa036cfa036bfe03
+6afe0369fe0368630c0568320367fe0366320365640a0565fe03640a0364400463620a05630c
+03620a0361601505619603600111056015035f0a035efe035dfe035c0111055cfe035b5a1b05
+5bfe035a0111055a1b0359fe0358fa0357fe035601110540ff56fe0355fe03541e0353140352
+51190552fa0351011105511903504f190550fa034f4e11054f19034e11034d1e034c4b14054c
+15034b4a11054b14034a490e054a1103490e0348fa034746140547150346140345fa0344430e
+05440f03430e034241250542fa0341011105412503403f0f0540fe033f3e0e053f0f033e0e03
+3d3c0d053d16033c0d033b64033afe0339140338fe0337130336351a0536250335341405351a
+0335c004340a0d0534140334800433320c05331403334004320c033130a60531fe0330011105
+30a6032f0c032e13032d2c3a052dfa032c1525052c3a032b64032a640329fe03281503271711
+05271e03262003251e0324231105402b241e0323110322000d0522fa03210f03214004201403
+1f0a031e1e031d1c19051d25031c0f13051c19031cb801004091041b0d031a194b051a7d0319
+011105194b0318fe031711031615250516fa031501110515250314640313110312fe03110111
+0511fe031064030f0e10050f13030fc0040e10030e80040d0111050dfa030c32030b0a0d050b
+16030b80040a0d030a400409fe0308fe0307fe0306050a0506fe03050a0305400404fa030364
+030201110502fe0301000d05011103000d0301b80164858d012b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b002b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
+2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b1d0000>
+] def
+/f-1-0 currentdict end definefont pop
+%%EndResource
+%%EndSetup
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox: 0 -1 598 403
+%%EndPageSetup
+q 0 -1 598 404 rectclip q
+0.768627 0.305882 0.321569 rg
+110 w
+0 J
+0 j
+[] 0.0 d
+4 M q 1 0 0 -1 0 402.030151 cm
+121.457 345 m 357.457 345 357.457 325 593.457 325 c S Q
+0.298039 0.447059 0.690196 rg
+66 w
+q 1 0 0 -1 0 402.030151 cm
+121.457 93 m 357.457 93 357.457 97 593.457 97 c S Q
+1 0.623529 0.603922 rg
+33 w
+q 1 0 0 -1 0 402.030151 cm
+121.457 194.5 m 357.457 194.5 357.457 209.5 593.457 209.5 c S Q
+0.505882 0.447059 0.698039 rg
+22 w
+q 1 0 0 -1 0 402.030151 cm
+121.457 271 m 357.457 271 357.457 259 593.457 259 c S Q
+0.298039 0.447059 0.690196 rg
+q 1 0 0 -1 0 402.030151 cm
+121.457 137 m 357.457 137 357.457 182 593.457 182 c S Q
+1 0.623529 0.603922 rg
+q 1 0 0 -1 0 402.030151 cm
+121.457 167 m 357.457 167 357.457 141 593.457 141 c S Q
+0.8 0.72549 0.454902 rg
+q 1 0 0 -1 0 402.030151 cm
+121.457 241 m 357.457 241 357.457 237 593.457 237 c S Q
+0.333333 0.658824 0.407843 rg
+q 1 0 0 -1 0 402.030151 cm
+121.457 41 m 357.457 41 357.457 53 593.457 53 c S Q
+0.392157 0.709804 0.803922 rg
+q 1 0 0 -1 0 402.030151 cm
+121.457 11 m 357.457 11 357.457 31 593.457 31 c S Q
+0.8 0.72549 0.454902 rg
+11 w
+q 1 0 0 -1 0 402.030151 cm
+121.457 224.5 m 357.457 224.5 357.457 157.5 593.457 157.5 c S Q
+0 g
+117.457 342.03 4 -88 re f
+117.457 112.03 4 -110 re f
+117.457 246.03 4 -55 re f
+117.457 183.03 4 -33 re f
+117.457 142.03 4 -22 re f
+117.457 372.03 4 -22 re f
+117.457 402.03 4 -22 re f
+593.457 231.03 4 -209 re f
+593.457 382.03 4 -143 re f
+BT
+9.5 0 0 9.5 90.973893 134.606417 Tm
+/f-0-0 1 Tf
+[(FEF)]TJ
+0 -1.25 Td
+(46)Tj
+-0.0170896 5.48759 Td
+(MSTd)Tj
+0 -1.25 Td
+(STPp)Tj
+0 -1.25 Td
+[(STP)44(a)]TJ
+10 0 0 10 13.964844 168.472388 Tm
+/f-1-0 1 Tf
+[(Polysens)-3(ory )]TJ
+0 -1.25 Td
+[(dors)-3(al ar)-3(eas)]TJ
+9.5 0 0 9.5 91.36355 238.884644 Tm
+/f-0-0 1 Tf
+(V4t)Tj
+0 -1.25 Td
+(PITd)Tj
+0 -1.25 Td
+(MT)Tj
+0 -1.25 Td
+(MSTl)Tj
+0 -1.25 Td
+[(F)17(ST)]TJ
+10 0 0 10 4.697266 213.930676 Tm
+/f-1-0 1 Tf
+[(Dorsa)-3(l strea)-3(m)]TJ
+9.5 0 0 9.5 91.36355 107.009521 Tm
+/f-0-0 1 Tf
+(V3)Tj
+0 -1.25 Td
+(V3A)Tj
+0 -1.25 Td
+(PIP)Tj
+0 -1.25 Td
+(PO)Tj
+0 -1.25 Td
+(DP)Tj
+0 -1.25 Td
+(MIP)Tj
+0 -1.25 Td
+(MDP)Tj
+0 -1.25 Td
+(VIP)Tj
+0 -1.25 Td
+(LIP)Tj
+0 -1.25 Td
+(7a)Tj
+10 0 0 10 4.697266 51.513745 Tm
+/f-1-0 1 Tf
+[(Dorsa)-3(l strea)-3(m)]TJ
+9.5 0 0 9.5 91.36355 393.325586 Tm
+/f-0-0 1 Tf
+(VP)Tj
+0 -1.25 Td
+[(V)18(OT)]TJ
+10 0 0 10 3.168945 393.552124 Tm
+/f-1-0 1 Tf
+[(Earl)-3(y visu)-3(al )]TJ
+0 -1.25 Td
+[(+ ventra)-3(l area)]TJ
+9.5 0 0 9.5 91.36355 363.504883 Tm
+/f-0-0 1 Tf
+(V1)Tj
+0 -1.25 Td
+(V2)Tj
+10 0 0 10 18.925781 358.894946 Tm
+/f-1-0 1 Tf
+[(Earl)-3(y visu)-3(al)]TJ
+9.5 0 0 9.5 91.465601 336.129883 Tm
+/f-0-0 1 Tf
+(V4)Tj
+0 -1.25 Td
+(PITv)Tj
+0 -1.25 Td
+[(CITv)]TJ
+0 -1.25 Td
+[(CITd)]TJ
+0 -1.25 Td
+(AITv)Tj
+0 -1.25 Td
+(AITd)Tj
+0 -1.25 Td
+(TH)Tj
+0 -1.25 Td
+(TF)Tj
+10 0 0 10 -0.0488281 295.403931 Tm
+/f-1-0 1 Tf
+[(V)55(entra)-3(l strea)-3(m)]TJ
+4.407227 -16.706753 Td
+[(F)64(ront)-3(al)]TJ
+24 0 0 24 552.461182 314.361511 Tm
+/f-0-0 1 Tf
+(1S)Tj
+0.0366211 -9.322224 Td
+(2S)Tj
+ET
+Q Q
+showpage
+%%Trailer
+end restore
+%%EOF
diff --git a/figures/Schmidt2018_dyn/Fig8_interactions.py b/figures/Schmidt2018_dyn/Fig8_interactions.py
new file mode 100644
index 0000000000000000000000000000000000000000..451f95632efa29f9ead2afdc724551c19e05e049
--- /dev/null
+++ b/figures/Schmidt2018_dyn/Fig8_interactions.py
@@ -0,0 +1,371 @@
+import csv
+import correlation_toolbox.helper as ch
+import json
+import numpy as np
+import os
+import pyx
+import scipy.io
+
+from helpers import original_data_path
+from multiarea_model.multiarea_model import MultiAreaModel
+from plotcolors import myred, myblue
+from scipy.spatial.distance import pdist
+from scipy.spatial.distance import squareform
+
+import matplotlib.pyplot as pl
+from matplotlib import gridspec
+from matplotlib import rc_file
+rc_file('plotstyle.rc')
+
+import sys
+sys.path.append('../Schmidt2018')
+from graph_helpers import apply_map_equation
+
+"""
+Figure layout
+"""
+cmap = pl.cm.coolwarm
+cmap = cmap.from_list('mycmap', [myblue, 'white', myred], N=256)
+cmap2 = cmap.from_list('mycmap', ['white', myred], N=256)
+
+
+width = 7.0866
+n_horz_panels = 2.
+n_vert_panels = 3.
+
+axes = {}
+gs1 = gridspec.GridSpec(1, 3)
+gs1.update(left=0.05, right=0.95, top=0.95,
+           bottom=0.52, wspace=0., hspace=0.4)
+axes['A'] = pl.subplot(gs1[:, 0])
+axes['B'] = pl.subplot(gs1[:, 1])
+axes['C'] = pl.subplot(gs1[:, 2])
+
+gs1 = gridspec.GridSpec(1, 1)
+gs1.update(left=0.18, right=0.8, top=0.44,
+           wspace=0., bottom=0.27, hspace=0.2)
+axes['D'] = pl.subplot(gs1[:, :])
+
+gs1 = gridspec.GridSpec(1, 1)
+gs1.update(left=0.165, right=0.6, top=0.15,
+           wspace=0., bottom=0.075, hspace=0.2)
+axes['E'] = pl.subplot(gs1[:, :])
+
+gs1 = gridspec.GridSpec(1, 1)
+gs1.update(left=0.688, right=0.95, top=0.15,
+           wspace=0., bottom=0.075, hspace=0.2)
+axes['F'] = pl.subplot(gs1[:, :])
+
+for label in ['A', 'B', 'C', 'D', 'E', 'F']:
+    if label in ['E', 'F']:
+        label_pos = [-0.08, 1.01]
+    else:
+        label_pos = [-0.2, 1.01]
+    pl.text(label_pos[0], label_pos[1], r'\bfseries{}' + label,
+            fontdict={'fontsize': 16, 'weight': 'bold',
+                      'horizontalalignment': 'left', 'verticalalignment':
+                      'bottom'}, transform=axes[label].transAxes)
+    axes[label].spines['right'].set_color('none')
+    axes[label].spines['top'].set_color('none')
+    axes[label].yaxis.set_ticks_position("left")
+    axes[label].xaxis.set_ticks_position("bottom")
+
+for label in ['E', 'F']:
+    axes[label].spines['right'].set_color('none')
+    axes[label].spines['top'].set_color('none')
+    axes[label].spines['left'].set_color('none')
+    axes[label].spines['bottom'].set_color('none')
+
+    axes[label].yaxis.set_ticks_position("none")
+    axes[label].xaxis.set_ticks_position("none")
+    axes[label].set_yticks([])
+    axes[label].set_xticks([])
+
+"""
+Load data
+"""
+
+"""
+Create MultiAreaModel instance to have access to data structures
+"""
+M = MultiAreaModel({})
+
+
+# Load experimental functional connectivity
+func_conn_data = {}
+with open('Fig8_exp_func_conn.csv', 'r') as f:
+    myreader = csv.reader(f, delimiter='\t')
+    # Skip first 3 lines
+    next(myreader)
+    next(myreader)
+    next(myreader)
+    areas = next(myreader)
+    for line in myreader:
+        dict_ = {}
+        for i in range(len(line)):
+            dict_[areas[i]] = float(line[i])
+        func_conn_data[areas[myreader.line_num - 5]] = dict_
+
+exp_FC = np.zeros((len(M.area_list),
+                   len(M.area_list)))
+for i, area1 in enumerate(M.area_list):
+    for j, area2 in enumerate(M.area_list):
+        exp_FC[i][j] = func_conn_data[area1][area2]
+
+
+"""
+Simulation data
+"""
+LOAD_ORIGINAL_DATA = True
+
+if LOAD_ORIGINAL_DATA:
+    tmin = 500.
+    tmax = 10000.
+
+    cc_weights_factor = [1.0, 1.4, 1.5, 1.6, 1.7, 1.75, 1.8, 1.9, 2., 2.1, 2.5]
+    labels = ['33fb5955558ba8bb15a3fdce49dfd914682ef3ea',
+              '783cedb0ff27240133e3daa63f5d0b8d3c2e6b79',
+              '380856f3b32f49c124345c08f5991090860bf9a3',
+              '5a7c6c2d6d48a8b687b8c6853fb4d98048681045',
+              'c1876856b1b2cf1346430cf14e8d6b0509914ca1',
+              'a30f6fba65bad6d9062e8cc51f5483baf84a46b7',
+              '1474e1884422b5b2096d3b7a20fd4bdf388af7e0',
+              '99c0024eacc275d13f719afd59357f7d12f02b77',
+              'f18158895a5d682db5002489d12d27d7a974146f',
+              '08a3a1a88c19193b0af9d9d8f7a52344d1b17498',
+              '5bdd72887b191ec22a5abcc04ca4a488ea216e32']
+
+    sim_FC = {}
+    for label in labels:
+        fn = os.path.join(original_data_path,
+                          label,
+                          'Analysis',
+                          'functional_connectivity_synaptic_input.npy')
+        sim_FC[label] = np.load(fn)
+
+    label = '99c0024eacc275d13f719afd59357f7d12f02b77'
+    fn = os.path.join(original_data_path,
+                      label,
+                      'Analysis',
+                      'FC_synaptic_input_communities.json')
+    with open(fn, 'r') as f:
+        part_sim = json.load(f)
+    part_sim_list = [part_sim[area] for area in M.area_list]
+    part_sim_index = np.argsort(part_sim_list, kind='heapsort')
+
+
+# """
+# Load bold signals
+# """
+# label = '99c0024eacc275d13f719afd59357f7d12f02b77'
+# bold_load_path = '../data/'
+# bold = {}
+# base_fn = 'bold_signal_syn_input/bold_signal_syn_input_{}'.format(label)
+# for area in M.area_list:
+#     bold[area] = np.load('{}_{}.npy'.format(base_fn, area))
+
+# data[label].bold_signal = bold
+
+
+def matrix_plot(ax, matrix, index, vlim, pos=None):
+    ax.yaxis.set_ticks_position('none')
+    ax.xaxis.set_ticks_position('none')
+
+    x = np.arange(0, len(M.area_list) + 1)
+    y = np.arange(0, len(M.area_list[::-1]) + 1)
+    X, Y = np.meshgrid(x, y)
+
+    ax.set_xlim((0, 32))
+    ax.set_ylim((0, 32))
+
+    ax.set_aspect(1. / ax.get_data_ratio())
+
+    vmax = vlim
+    vmin = -vlim
+
+    # , norm = LogNorm(1e-8,1.))
+    im = ax.pcolormesh(matrix[index][:, index][::-1],
+                       cmap=cmap, vmin=vmin, vmax=vmax)
+
+    cbticks = [-1., -0.5, 0., 0.5, 1.0]
+    cb = pl.colorbar(im, ax=ax, ticks=cbticks, fraction=0.046)
+    cb.ax.tick_params(labelsize=12)
+    ax.set_yticks([i + 0.5 for i in np.arange(0, len(M.area_list) + 1)])
+    ax.set_yticklabels(np.array(M.area_list)[index][::-1], size=8.)
+
+    if pos != (0, 2):
+        cb.remove()
+    else:
+        ax.text(1.25, 0.52, r'FC', rotation=90,
+                transform=ax.transAxes, size=12)
+    ax.set_xticks([i + 0.5 for i in np.arange(0, len(M.area_list) + 1)])
+    ax.set_xticklabels(np.array(M.area_list)[index], rotation=90, size=8.)
+    ax.tick_params(pad=1.5)
+
+
+"""
+Plotting
+"""
+ax = axes['A']
+label = '99c0024eacc275d13f719afd59357f7d12f02b77'
+
+
+matrix_plot(ax, sim_FC[label],
+            part_sim_index[::-1], 1., pos=(0, 0))
+
+ax = axes['B']
+matrix_plot(ax, FC_exp,
+            louvain_sim_mat_index[::-1], 1., pos=(0, 1))
+
+# ax = axes['C']
+
+# matrix_plot(ax, exp_FC, louvain_sim_mat_index[::-1], 1., pos=(0, 2))
+
+# indices = np.array(1. - np.eye(32), dtype=np.bool)
+
+
+# def compute_cc(label, cmp_matrix, measure='synaptic_input'):
+#     ts = []
+#     if measure == 'synaptic_input':
+#         d = data[label].synaptic_input
+#     elif measure == 'bold':
+#         d = data[label].bold_signal
+#     for area in M.area_list:
+#         ts.append(ch.centralize(d[area], units=True))
+
+#     D = pdist(ts, metric='correlation')
+#     correlation_matrix = 1. - squareform(D)
+#     for i in range(32):
+#         correlation_matrix[i][i] = 0.
+
+#     cc = np.corrcoef(correlation_matrix[indices].flatten(),
+#                      cmp_matrix[indices].flatten())[0][1]
+#     return cc
+
+# for k in labels:
+#     cc_exp = compute_cc(k, func_conn)
+#     corrcoeffs['sim_exp'].append(cc_exp)
+#     cc_struct = compute_cc(label, conn_matrix)
+#     corrcoeffs['sim_struct'].append(cc_struct)
+
+# label = '99c0024eacc275d13f719afd59357f7d12f02b77'
+# cc_exp = compute_cc(label, func_conn)
+# cc_struct = compute_cc(label, conn_matrix)
+# ##########################################################################
+
+# ax = axes['D']
+# ax.spines['right'].set_color('none')
+# ax.spines['top'].set_color('none')
+# ax.yaxis.set_ticks_position("left")
+# ax.xaxis.set_ticks_position("bottom")
+
+# ax.plot(cc_weights_factor_100[0], cc_exp, '.',
+#         ms=10, markeredgecolor='none', color='k')
+
+# ax.plot(cc_weights_factor[1:], corrcoeffs[
+#         'sim_exp'][1:], '.', ms=10, markeredgecolor='none', label='Sim. vs. Exp.', color='k')
+# ax.plot(cc_weights_factor[0], corrcoeffs[
+#         'sim_exp'][0], '^', ms=5, markeredgecolor='none', label='Sim. vs. Exp.', color='k')
+
+# cc_bold = compute_cc('99c0024eacc275d13f719afd59357f7d12f02b77', func_conn, measure='bold')
+# ax.plot(cc_weights_factor_100[0], cc_bold, '.',
+#         ms=10, markeredgecolor='none', color=myred)
+
+# print(("Corr. with HiRes",
+#        np.corrcoef(correlation_matrix[indices].flatten(),
+#                    func_conn[indices].flatten())[0][1]))
+# print(("Corr. with HiRes", corrcoeffs['sim_exp']))
+# print(("Corr. of structur with HiRes",
+#        np.corrcoef(conn_matrix[indices].flatten(),
+#                    func_conn[indices].flatten())[0][1]))
+
+# ax.hlines(corrcoeffs['struct_exp'], -0.1,
+#           2.5, linestyle='dashed', color='k')
+# ax.set_xlabel(r'Cortico-cortical weight factor $\chi$',
+#               labelpad=-0.1, size=16)
+# ax.set_ylabel(r'$r_{\mathrm{Pearson}}$', size=16)
+# ax.set_xlim((0.9, 2.7))
+# ax.set_ylim((-0.1, 0.6))
+# ax.set_yticks([0., 0.2, 0.4])
+# ax.set_yticklabels([0., 0.2, 0.4], size=13)
+# ax.set_xticks([1., 1.5, 2., 2.5])
+# ax.set_xticklabels([1., 1.5, 2., 2.5], size=13)
+
+
+"""
+Save figure
+"""
+pl.savefig('Fig8_interactions_mpl.eps')
+
+# """
+# We compare the clusters found in the functional connectivity to
+# clusters found in the structural connectivity of the network. To
+# detect the clusters in the structural connectivity, we repeat the the
+# procedure from Fig. 7 of Schmidt et al. 'Multi-scale account of the
+# network structure of macaque visual cortex' and apply the map equation
+# method (see Materials & Methods in Schmidt et al. 2018) to the
+# structural connectivity of the network.
+
+# This requires installation of the infomap executable and defining the
+# path to the executable.
+# """
+# infomap_path = None
+# filename = 'Fig8_structural_clusters'
+# modules, modules_areas, index = apply_map_equation(M.K_matrix,
+#                                                    M.area_list,
+#                                                    filename='stab',
+#                                                    infomap_path=infomap_path)
+# files = 'Fig8_structural_clusters.map'
+# map_equation_dict = {}
+# with open('{}.map'.format(fn), 'r') as f:
+#     line = ''
+#     while '*Nodes' not in line:
+#         line = f.readline()
+#     line = f.readline()
+#     map_equation = []
+#     map_equation_areas = []
+#     while "*Links" not in line:
+#         map_equation.append(int(line.split(':')[0]))
+#         map_equation_areas.append(line.split('"')[1])
+#         line = f.readline()
+#     f.close()
+#     map_equation = np.array(map_equation)
+#     map_equation_dict[label] = dict(
+#         list(zip(map_equation_areas, map_equation)))
+
+# To create the alluvial input, we rename the simulated clusters
+# 1S --> 2S, 2S ---> 1S
+# f = open('alluvial_input.txt', 'w')
+# f.write("area,map_equation, louvain, louvain_exp\n")
+# for i, area in enumerate(M.area_list):
+#     if part_sim_mat[i] == 1:
+#         psm = 2
+#     elif part_sim_mat[i] == 2:
+#         psm = 1
+#     s = '{}, {}, {}, {}, {}'.format(area,
+#                                     map_equation_dict[area],
+#                                     psm,
+#                                     part_exp_mat[i])
+#     f.write(s)
+#     f.write('\n')
+# f.close()
+
+# The alluvial plot cannot be created with a script. To reproduce the alluvial
+# plot, go to http://app.rawgraphs.io/ and proceed from there.
+
+"""
+Merge with alluvial plot
+"""
+pyx.text.set(cls=pyx.text.LatexRunner)
+pyx.text.preamble(r"\usepackage{helvet}")
+
+c = pyx.canvas.canvas()
+c.fill(pyx.path.rect(0, 0., 17.9, 17.), [pyx.color.rgb.white])
+
+c.insert(pyx.epsfile.epsfile(0., 6., "Fig8_interactions_mpl.eps", width=17.9))
+c.insert(pyx.epsfile.epsfile(
+    1.7, 1., "Fig8_alluvial_struct_sim.eps", width=8.8))
+c.insert(pyx.epsfile.epsfile(
+    11.5, 1.3, "Fig8_alluvial_sim_exp.eps", width=5.4))
+
+c.writeEPSfile("Fig8_interactions.eps")
diff --git a/figures/Schmidt2018_dyn/Snakefile b/figures/Schmidt2018_dyn/Snakefile
index 94a3513285cbad8f246b7c22bb99217c0c623082..247aa10a25b5b432f3ea54fe568b767c90120694 100644
--- a/figures/Schmidt2018_dyn/Snakefile
+++ b/figures/Schmidt2018_dyn/Snakefile
@@ -38,7 +38,18 @@ ORIGINAL_SIMULATIONS = {'all': ['533d73357fbe99f6178029e6054b571b485f40f6',
                                  '5bdd72887b191ec22a5abcc04ca4a488ea216e32',
                                  '99c0024eacc275d13f719afd59357f7d12f02b77',
                                  '3afaec94d650c637ef8419611c3f80b3cb3ff539'],
-                        'Fig7': ['99c0024eacc275d13f719afd59357f7d12f02b77']}
+                        'Fig7': ['99c0024eacc275d13f719afd59357f7d12f02b77'],
+                        'Fig8': ['33fb5955558ba8bb15a3fdce49dfd914682ef3ea',
+                                 '783cedb0ff27240133e3daa63f5d0b8d3c2e6b79',
+                                 '380856f3b32f49c124345c08f5991090860bf9a3',
+                                 '5a7c6c2d6d48a8b687b8c6853fb4d98048681045',
+                                 'c1876856b1b2cf1346430cf14e8d6b0509914ca1',
+                                 'a30f6fba65bad6d9062e8cc51f5483baf84a46b7',
+                                 '1474e1884422b5b2096d3b7a20fd4bdf388af7e0',
+                                 'f18158895a5d682db5002489d12d27d7a974146f',
+                                 '08a3a1a88c19193b0af9d9d8f7a52344d1b17498',
+                                 '5bdd72887b191ec22a5abcc04ca4a488ea216e32',
+                                 '99c0024eacc275d13f719afd59357f7d12f02b77']}
 
 
 if LOAD_ORIGINAL_DATA:
@@ -53,7 +64,8 @@ rule all:
         'Fig4_metastability.eps',
         'Fig5_ground_state.eps',
         'Fig6_comparison_exp_spiking_data.eps',
-        'Fig7_temporal_hierarchy.eps'
+        'Fig7_temporal_hierarchy.eps',
+        'Fig8_interactions.eps'
 
 include: './Snakefile_preprocessing'
 
@@ -150,3 +162,17 @@ rule Fig7_temporal_hierarchy:
         'Fig7_temporal_hierarchy.eps'
     shell:
         'python3 Fig7_temporal_hierarchy.py'
+
+rule Fig8_interactions:
+    input:
+        expand(os.path.join(DATA_DIR, '{simulation}', 'Analysis', 'functional_connectivity_synaptic_input.npy'),
+               simulation=SIMULATIONS['Fig8']),
+        expand(os.path.join(DATA_DIR, '{simulation}', 'Analysis', 'FC_synaptic_input_communities.json'),
+               simulation=SIMULATIONS['Fig8'][-1]),
+        expand(os.path.join(DATA_DIR, '{simulation}', 'Analysis', 'functional_connectivity_bold_signal.npy'),
+               simulation=SIMULATIONS['Fig8'][-1])
+    output:
+        'Fig8_interactions.eps'
+    shell:
+        'python3 Fig8_interactions.py'
+        
diff --git a/figures/Schmidt2018_dyn/Snakefile_preprocessing b/figures/Schmidt2018_dyn/Snakefile_preprocessing
index 9bbfda2f9510250b7f23a94d0ed439f59b5ac4d1..c11ab8b8f373839310669b1d87877a7106eb6ee5 100644
--- a/figures/Schmidt2018_dyn/Snakefile_preprocessing
+++ b/figures/Schmidt2018_dyn/Snakefile_preprocessing
@@ -80,3 +80,40 @@ rule cross_correlation:
                      'cross_correlation_{area1}_{area2}.npy')
     shell:
         'python3 compute_cross_correlation.py {} {{wildcards.simulation}} {{wildcards.area1}} {{wildcards.area2}}'.format(DATA_DIR)
+
+rule synaptic_input:
+    input:
+        expand(os.path.join(DATA_DIR, '{{simulation}}', 'Analysis',
+                            'rate_time_series_full',
+                            'rate_time_series_full_{{area}}_{pop}.npy'),
+               pop=population_list),
+    output:
+        os.path.join(DATA_DIR, '{simulation}', 'Analysis', 'synaptic_input', 'synaptic_input_{area}.npy')
+    shell:
+        'python3 compute_synaptic_input.py {} {{wildcards.simulation}} {{wildcards.area}}'.format(DATA_DIR)
+
+rule functional_connectivity:
+    input:
+        expand(os.path.join(DATA_DIR, '{{simulation}}', 'Analysis', '{{method}}', '{{method}}_{area}.npy'),
+               area=area_list)
+    output:
+        os.path.join(DATA_DIR, '{simulation}', 'Analysis', 'functional_connectivity_{method}.npy')
+    shell:
+        'python3 compute_functional_connectivity.py {} {{wildcards.simulation}} {{wildcards.method}}'.format(DATA_DIR)
+
+rule communities_FC:
+    input:
+        os.path.join(DATA_DIR, '{simulation}', 'Analysis', 'functional_connectivity.npy')
+    output:
+        os.path.join(DATA_DIR, '{simulation}', 'Analysis', 'FC_synaptic_input_communities.json')
+    shell:
+        'python3 compute_louvain_communities.py {} {{wildcards.simulation}}'.format(DATA_DIR)
+
+rule bold_signal:
+    input:
+        os.path.join(DATA_DIR, '{simulation}', 'Analysis', 'synaptic_input', 'synaptic_input_{area}.npy')
+    output:
+        os.path.join(DATA_DIR, '{simulation}', 'Analysis', 'bold_signal', 'bold_signal_{area}.npy')
+    shell:
+        'python3 compute_bold_signal.py {} {{wildcards.simulation}} {{wildcards.area}}'.format(DATA_DIR)
+
diff --git a/figures/Schmidt2018_dyn/compute_bold_signal.R b/figures/Schmidt2018_dyn/compute_bold_signal.R
new file mode 100644
index 0000000000000000000000000000000000000000..a1cb882da10d4dd16e979091d2814b2607965bf0
--- /dev/null
+++ b/figures/Schmidt2018_dyn/compute_bold_signal.R
@@ -0,0 +1,12 @@
+library('neuRosim')
+args <- commandArgs(trailingOnly=TRUE)
+print(args)
+
+x <- read.table(args[1])
+d <- data.matrix(x)
+
+T <- 100
+it <- 0.001
+
+out <- balloon(d, T, it)
+write.table(out, args[2])
\ No newline at end of file
diff --git a/figures/Schmidt2018_dyn/compute_bold_signal.py b/figures/Schmidt2018_dyn/compute_bold_signal.py
new file mode 100644
index 0000000000000000000000000000000000000000..a10f5a59501fe13557fa38348b0ccf82385a91cd
--- /dev/null
+++ b/figures/Schmidt2018_dyn/compute_bold_signal.py
@@ -0,0 +1,54 @@
+import numpy as np
+import os
+import sys
+
+
+data_path = sys.argv[1]
+label = sys.argv[2]
+area = sys.argv[3]
+
+load_path = os.path.join(data_path,
+                         label,
+                         'Analysis',
+                         'synaptic_input')
+
+save_path = os.path.join(data_path,
+                         label,
+                         'Analysis',
+                         'bold_signal')
+
+try:
+    os.mkdir(save_path)
+except FileExistsError:
+    pass
+
+fn = os.path.join(load_path,
+                  'synaptic_input_{}.npy'.format(area))
+synaptic_input = np.load(fn)
+
+
+def bold_R_parser(fn):
+    f = open(fn, 'r')
+    # skip first line
+    f.readline()
+
+    bold_signal = []
+    for l in f:
+        bold_signal.append(float(l.split(' ')[-1]))
+    f.close()
+    return np.array(bold_signal)
+
+
+fn = os.path.join(save_path,
+                  'syn_input_{}.txt'.format(area))
+out_fn = os.path.join(save_path,
+                      'bold_syn_input_{}.txt'.format(area))
+
+np.savetxt(fn, synaptic_input / np.max(synaptic_input))
+os.system('Rscript --vanilla compute_bold_signal.R {} {}'.format(fn, out_fn))
+
+bold_signal = bold_R_parser(out_fn)
+fn = os.path.join(save_path,
+                  'bold_signal_{}.npy'.format(area))
+np.save(fn, bold_signal)
+
diff --git a/figures/Schmidt2018_dyn/compute_functional_connectivity.py b/figures/Schmidt2018_dyn/compute_functional_connectivity.py
new file mode 100644
index 0000000000000000000000000000000000000000..35f44d880282e5a3297ec49bb4791920a094b960
--- /dev/null
+++ b/figures/Schmidt2018_dyn/compute_functional_connectivity.py
@@ -0,0 +1,39 @@
+import correlation_toolbox.helper as ch
+import numpy as np
+import os
+import sys
+
+from multiarea_model import MultiAreaModel
+from scipy.spatial.distance import pdist
+from scipy.spatial.distance import squareform
+
+data_path = sys.argv[1]
+label = sys.argv[2]
+method = sys.argv[3]
+
+load_path = os.path.join(data_path,
+                         label,
+                         'Analysis',
+                         method)
+save_path = os.path.join(data_path,
+                         label,
+                         'Analysis')
+
+"""
+Create MultiAreaModel instance to have access to data structures
+"""
+M = MultiAreaModel({})
+
+time_series = []
+for area in M.area_list:
+    fn = os.path.join(load_path,
+                      '{}_{}.npy'.format(method, area))
+    si = np.load(fn)
+    time_series.append(ch.centralize(si, units=True))
+
+D = pdist(time_series, metric='correlation')
+correlation_matrix = 1. - squareform(D)
+
+np.save(os.path.join(save_path,
+                     'functional_connectivity_{}.npy'.format(method)),
+        correlation_matrix)
diff --git a/figures/Schmidt2018_dyn/compute_louvain_communities.py b/figures/Schmidt2018_dyn/compute_louvain_communities.py
new file mode 100644
index 0000000000000000000000000000000000000000..de1a616919926c1395318eeb69217e6a47ed6e01
--- /dev/null
+++ b/figures/Schmidt2018_dyn/compute_louvain_communities.py
@@ -0,0 +1,48 @@
+import community
+import json
+import networkx as nx
+import numpy as np
+import os
+import sys
+
+from multiarea_model.multiarea_model import MultiAreaModel
+
+data_path = sys.argv[1]
+label = sys.argv[2]
+
+
+"""
+Create MultiAreaModel instance to have access to data structures
+"""
+M = MultiAreaModel({})
+
+
+load_path = os.path.join(data_path,
+                         label,
+                         'Analysis',
+                         'functional_connectivity_synaptic_input.npy')
+
+
+FC = np.load(load_path)
+for i in range(FC.shape[0]):
+    FC[i][i] = 0.
+    
+G = nx.Graph()
+for area in M.area_list:
+    G.add_node(area)
+
+edges = []
+for i, area in enumerate(M.area_list):
+    for j, area2 in enumerate(M.area_list):
+        edges.append((area, area2, FC[i][j]))
+G.add_weighted_edges_from(edges)
+
+part = community.best_partition(G)
+
+fn = os.path.join(data_path,
+                  label,
+                  'Analysis',
+                  'FC_synaptic_input_communities.json')
+
+with open(fn, 'w') as f:
+    json.dump(part, f)
diff --git a/figures/Schmidt2018_dyn/compute_synaptic_input.py b/figures/Schmidt2018_dyn/compute_synaptic_input.py
new file mode 100644
index 0000000000000000000000000000000000000000..36cc2283b31d46f759e830459fea84e4ccf34304
--- /dev/null
+++ b/figures/Schmidt2018_dyn/compute_synaptic_input.py
@@ -0,0 +1,97 @@
+import correlation_toolbox.helper as ch
+import correlation_toolbox.correlation_analysis as corr
+import json
+import numpy as np
+import os
+import sys
+
+from multiarea_model.multiarea_model import MultiAreaModel
+
+data_path = sys.argv[1]
+label = sys.argv[2]
+area = sys.argv[3]
+
+
+load_path = os.path.join(data_path,
+                         label,
+                         'Analysis',
+                         'rate_time_series_full')
+save_path = os.path.join(data_path,
+                         label,
+                         'Analysis',
+                         'synaptic_input')
+
+with open(os.path.join(data_path, label, 'custom_params_{}'.format(label)), 'r') as f:
+    sim_params = json.load(f)
+T = sim_params['T']
+
+
+"""
+Create MultiAreaModel instance to have access to data structures
+"""
+connection_params = {'cc_weights_factor': sim_params['cc_weights_factor'],
+                     'cc_weights_I_factor': sim_params['cc_weights_I_factor'],
+                     'K_stable': '../SchueckerSchmidt2017/K_prime_original.npy'}
+
+M = MultiAreaModel({})
+
+"""
+Synaptic filtering kernel
+"""
+t = np.arange(0., 20., 1.)
+tau_syn = M.params['neuron_params']['single_neuron_dict']['tau_syn_ex']
+kernel = np.exp(-t / tau_syn)
+
+    
+"""
+Load rate time series
+"""
+rate_time_series = {}
+for source_area in M.area_list:
+    rate_time_series[source_area] = {}
+    for source_pop in M.structure[source_area]:
+        fn = os.path.join(load_path,
+                          'rate_time_series_full_{}_{}.npy'.format(source_area, source_pop))
+        dat = np.load(fn)
+        rate_time_series[source_area][source_pop] = dat
+
+
+synaptic_input_list = []
+N_list = []
+for pop in M.structure[area]:
+    time_series = np.zeros(int((sim_params['T'] - 500.)))
+    for source_area in M.area_list:
+        for source_pop in M.structure[source_area]:
+            weight = M.W[area][pop][source_area][source_pop]
+            time_series += (rate_time_series[source_area][source_pop] *
+                            abs(weight) *
+                            M.K[area][pop][source_area][source_pop])
+    syn_current = np.convolve(kernel, time_series, mode='same')
+    synaptic_input_list.append(time_series)
+    N_list.append(M.N[area][pop])
+
+    fp = '_'.join(('synaptic_input',
+                   area,
+                   pop))
+    try:
+        os.mkdir(save_path)
+    except FileExistsError:
+        pass
+    np.save('{}/{}.npy'.format(save_path, fp), time_series)
+
+synaptic_input_list = np.array(synaptic_input_list)
+area_time_series = np.average(synaptic_input_list, axis=0, weights=N_list)
+
+fp = '_'.join(('synaptic_input',
+               area))
+np.save('{}/{}.npy'.format(save_path, fp), area_time_series)
+
+par = {'areas': M.area_list,
+       'pops': 'complete',
+       'resolution': 1.,
+       't_min': 500.,
+       't_max': T}
+fp = '_'.join(('synaptic_input',
+               'Parameters.json'))
+with open('{}/{}'.format(save_path, fp), 'w') as f:
+    json.dump(par, f)