diff --git a/figures/SchueckerSchmidt2017/Fig2_EE_example_1D_data.py b/figures/SchueckerSchmidt2017/Fig2_EE_example_1D_data.py index 326500f2e2e7cbdf3a8bd6d0cf47943363af3318..548f6fb787286cce0c6f6a8aea31b14b9e914040 100644 --- a/figures/SchueckerSchmidt2017/Fig2_EE_example_1D_data.py +++ b/figures/SchueckerSchmidt2017/Fig2_EE_example_1D_data.py @@ -26,7 +26,6 @@ class network: self.W_matrix = np.array([[params['W'], params['W']]]) self.J_matrix = convert_syn_weight(self.W_matrix, self.params['neuron_params']['single_neuron_dict']) - self.theory = Theory(self, theory_spec) @@ -34,12 +33,13 @@ class network: mu, sigma = self.theory.mu_sigma(rate) # print(mu, sigma) NP = self.params['neuron_params']['single_neuron_dict'] - return nu0_fb(mu, sigma, - 1.e-3*NP['tau_m'], - 1.e-3*NP['tau_syn_ex'], - 1.e-3*NP['t_ref'], - NP['V_th'] - NP['E_L'], - NP['V_reset'] - NP['E_L']) + return list(map(lambda mu, sigma: nu0_fb(mu, sigma, + 1.e-3*NP['tau_m'], + 1.e-3*NP['tau_syn_ex'], + 1.e-3*NP['t_ref'], + NP['V_th'] - NP['E_L'], + NP['V_reset'] - NP['E_L']), + mu, sigma)) """ @@ -48,8 +48,8 @@ space showing bifurcation rate_exts_array = np.arange(150., 170.1, 1.) -network_params = {'K': 105., - 'W': 40.} +network_params = {'K': 210., + 'W': 10.} theory_params = {'T': 20., 'dt': 0.01} @@ -73,21 +73,17 @@ theory_params = {'T': 20., # pl.savefig('Fig2_EE_example_1D_data.eps') -fig = pl.figure() -x = np.arange(0, 30., 0.02) -# x = [30.] -K = [26.25, 52.5, 105., 210., 420.] -W = [160., 80., 40., 20., 10.] -rate_ext = 150. -for k, w in zip(K, W): +fig = pl.figure() +x = np.arange(0, 70., 1.) + +for rate_ext in [150., 160., 170.]: input_params = {'rate_ext': rate_ext} - network_params.update({'input_params': input_params, - 'K': k, - 'W': w}) + network_params.update({'input_params': input_params}) net = network(network_params, theory_params) - y = np.fromiter([net.Phi(xi) for xi in x], dtype=np.float) + y = np.fromiter([net.Phi(x[i])[0] for i in range(len(x))], dtype=np.float) pl.plot(x, y) - +pl.plot(x, x, '--') +pl.show() # for i, dic in enumerate(mfp.par_list(PS)): # print(dic) # para_dic, label = mfp.hashtag(dic)