diff --git a/multi-area-model.ipynb b/multi-area-model.ipynb index cd903083d215a313b5478fdbf612eec91b38087c..b32aab190074e69cb7ce74a96083eea53c9de8fb 100644 --- a/multi-area-model.ipynb +++ b/multi-area-model.ipynb @@ -8,12 +8,44 @@ "# Down-scaled multi-area model" ] }, + { + "cell_type": "markdown", + "id": "b952d0ea", + "metadata": {}, + "source": [ + "### Notebook structure\n", + "* [Create config file](#section_1)\n", + "* [Import dependencies](#section_2)\n", + "* [Jupyter notebook display format setting](#section_3)\n", + "* [Specify paramters of model](#section_4)\n", + " * [1. Scaling factor (scale_down_to)](#section_4.1)\n", + " * [2. Model parameters](#section_4.2)\n", + " * [3. Simulation parameters](#section_4.3)\n", + " * [4. Theory parameters](#section_4.4)\n", + "* [Instantiate a multi-area model and analyse](#section_5)\n", + " * [1. Insantiate a multi-area model](#section_5.1)\n", + " * [2. Predict firing rates from theory](#section_5.2)\n", + " * [3. Extract connectivity](#section_5.3)\n", + "* [Run the simulation](#section_6)\n", + "* [Simulation results analysis](#section_7)\n", + "* [Load and process data of simulation results](#section_8)\n", + "* [Simulation results visualization](#section_9) " + ] + }, + { + "cell_type": "markdown", + "id": "2c0c47ec", + "metadata": {}, + "source": [ + "<br>" + ] + }, { "cell_type": "markdown", "id": "d782e527", "metadata": {}, "source": [ - "### Create config file" + "### Create config file <a class=\"anchor\" id=\"section_1\"></a>" ] }, { @@ -38,7 +70,7 @@ "id": "4a853b97", "metadata": {}, "source": [ - "### Import dependencies" + "### Import dependencies <a class=\"anchor\" id=\"section_2\"></a>" ] }, { @@ -73,7 +105,7 @@ "id": "2f429063", "metadata": {}, "source": [ - "### Jupyter notebook display format setting" + "### Jupyter notebook display format setting <a class=\"anchor\" id=\"section_3\"></a>" ] }, { @@ -105,7 +137,7 @@ "tags": [] }, "source": [ - "## Specify paramters of model" + "### Specify paramters of model <a class=\"anchor\" id=\"section_4\"></a>" ] }, { @@ -115,7 +147,7 @@ "tags": [] }, "source": [ - "### 1. Scaling factor (scale_down_to)\n", + "#### 1. Scaling factor (scale_down_to) <a class=\"anchor\" id=\"section_4.1\"></a>\n", "**Scaling factor** (scale_down_to) is the parameter which defines the the ratio of the full scale multi-area model being down-scaled to a model with fewer neurons and indegrees so as to be simulated on machines with lower computational ability and the simulation results can be obtained within relative shorter period of time.<br> <br> \n", "Neurons and indegrees are both scaled down to 0.5%, where the model can usually be simulated on a local machine.<br> **Warning**: This will not yield reasonable dynamical results from the network and is only meant to demonstrate the simulation workflow.**" ] @@ -140,41 +172,13 @@ "scale_down_to = 0.005 # Change it to 1. for running the fullscale network" ] }, - { - "cell_type": "markdown", - "id": "d53f1eab", - "metadata": {}, - "source": [ - "### 2. Model, simulation and theory parameters" - ] - }, - { - "cell_type": "markdown", - "id": "e779c727", - "metadata": {}, - "source": [ - "The parameters fall into 3 categories: Model parameters, Simulation parameters, Theory parameters.<br>\n", - "\n", - "**Model parameters**<br>\n", - "Model paramters are the most important among all the paramters, it directly affect the model itself and thus have a great impact on the simulation results. Model paramters define the connection, input, neuron, and network charateristics of the model.\n", - "* Connection paramters\n", - "* Input parameters\n", - "* Neuron parameters\n", - "* Network parameters<br>\n", - "\n", - "**Simualation parameters**<br>\n", - "Simulation parameters define the paramters that influence the process of simulation, inlcuding the simulation time, the number of processes and theads used to run the simulation.<br>\n", - "\n", - "**Theory parameters**<br>\n", - "Theory parameters defines ..." - ] - }, { "cell_type": "markdown", "id": "14bac1ce-4ba0-47ec-84b2-9d3c72bc96ec", "metadata": {}, "source": [ - "#### 2.1 Model parameters" + "#### 2. Model parameters <a class=\"anchor\" id=\"section_4.2\"></a>\n", + "Model paramters are most important among all the paramters, it directly affect the model itself and thus have a great impact on the simulation results. Model paramters define the connection, input, neuron, and network charateristics of the model, and therefore fall into four categories: **Connection paramters**, **Input paramters**, **Neuron paramters**, and **Network paramters**." ] }, { @@ -318,7 +322,8 @@ "id": "a0730f70-ed9b-4664-b677-3dda965a01ef", "metadata": {}, "source": [ - "### 2.2 Simulation paramters (sim_params)" + "#### 3. Simulation paramters (sim_params) <a class=\"anchor\" id=\"section_4.3\"></a>\n", + "Simulation parameters define the paramters that influence the process of simulation, inlcuding the simulation time, the number of processes and theads used to run the simulation.<br>" ] }, { @@ -354,7 +359,8 @@ "id": "79596d77-c105-45d0-9a57-2d15e31f1189", "metadata": {}, "source": [ - "### 2.3. Theory paramters (theory_params)" + "#### 4. Theory paramters (theory_params) <a class=\"anchor\" id=\"section_4.4\"></a>\n", + "Theory parameters defines ..." ] }, { @@ -390,7 +396,7 @@ "id": "de4a6703", "metadata": {}, "source": [ - "## Instantiate a multi-area model and analyse" + "### Instantiate a multi-area model and analyse <a class=\"anchor\" id=\"section_5\"></a>" ] }, { @@ -398,7 +404,7 @@ "id": "1fd58841", "metadata": {}, "source": [ - "### 1. Insantiate a multi-area model " + "#### 1. Insantiate a multi-area model <a class=\"anchor\" id=\"section_5.1\"></a>" ] }, { @@ -419,7 +425,7 @@ "id": "91649c30", "metadata": {}, "source": [ - "### 2. Predict firing rates from theory" + "#### 2. Predict firing rates from theory <a class=\"anchor\" id=\"section_5.2\"></a>" ] }, { @@ -439,7 +445,7 @@ "id": "2062ddf3", "metadata": {}, "source": [ - "### 3. Extract connectivity" + "#### 3. Extract connectivity <a class=\"anchor\" id=\"section_5.3\"></a>" ] }, { @@ -455,7 +461,7 @@ "id": "b7396606", "metadata": {}, "source": [ - "#### 3.1 Node indegrees" + "##### 3.1 Node indegrees" ] }, { @@ -475,7 +481,7 @@ "id": "253a2aba", "metadata": {}, "source": [ - "#### 3.2 Synapses" + "##### 3.2 Synapses" ] }, { @@ -503,7 +509,7 @@ "id": "0c1cad59-81d0-4e24-ac33-13c4ca8c6dec", "metadata": {}, "source": [ - "## Run the simulation" + "### Run the simulation <a class=\"anchor\" id=\"section_6\"></a>" ] }, { @@ -530,7 +536,7 @@ "id": "28e071f8", "metadata": {}, "source": [ - "## Simulation results analysis" + "### Simulation results analysis <a class=\"anchor\" id=\"section_7\"></a>" ] }, { @@ -628,7 +634,7 @@ "id": "9be9287d-4891-4b4b-bd19-cfc2ebed02ac", "metadata": {}, "source": [ - "## Load and process data of simulation results" + "### Load and process data of simulation results" ] }, { @@ -636,7 +642,7 @@ "id": "8726a93d", "metadata": {}, "source": [ - "### 1. Load spike data" + "#### 1. Load spike data" ] }, { @@ -654,7 +660,7 @@ "id": "8793e033", "metadata": {}, "source": [ - "### 2. Compute instantaneous rate per neuron across all populations" + "#### 2. Compute instantaneous rate per neuron across all populations" ] }, { @@ -681,7 +687,7 @@ "id": "57ff902c-d6ce-4f96-9e4f-8e3e7166ab66", "metadata": {}, "source": [ - "## Simulation results visualization" + "### Simulation results visualization" ] }, { @@ -689,7 +695,7 @@ "id": "38ddd973", "metadata": {}, "source": [ - "### 1. Instantaneous and mean rate" + "#### 1. Instantaneous and mean rate" ] }, {