diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint-checkpoint.R
deleted file mode 100644
index 410fdd1141c305967079963af1f5665275c3b0fd..0000000000000000000000000000000000000000
--- a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint-checkpoint.R
+++ /dev/null
@@ -1,14 +0,0 @@
-library('aod')
-args <- commandArgs(trailingOnly=TRUE)
-source(paste(args,'multiarea_model/data_multiarea/bbAlt.R', sep=""))
-f <- file(paste(args,'multiarea_model/data_multiarea/raw_data/RData_prepared_logdensities.txt', sep=""),'r')
-x <- read.table(f)
-close(f)
-
-
-dens <- data.matrix(x)[,7]
-
-m2.bb <- betabin(cbind(S, I) ~ dens , ~ 1, data = x, "probit", control = list(maxit = 100000))
-h2.bb <- c(coef(m2.bb))
-
-print(h2.bb)
diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint-checkpoint.R
deleted file mode 100644
index 6aa3d5eab91649f69cee522c44aa84468fecc7b9..0000000000000000000000000000000000000000
--- a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint-checkpoint.R
+++ /dev/null
@@ -1,289 +0,0 @@
-# Script provided by Kenneth Knoblauch
-# This code is based on functions from the aod package of R written by
-# Matthieu Lesnoff and Renaud Lancelot
-# (https://cran.r-project.org/web/packages/aod/index.html), published
-# under the GPL-3 license
-# (https://cran.r-project.org/web/licenses/GPL-3).
-
-betabin <- function (formula, random, data = NULL, link = c("logit", "probit", "cloglog"), 
-    phi.ini = NULL, warnings = FALSE, na.action = na.omit, fixpar = list(), 
-    hessian = TRUE, control = list(maxit = 2000), ...) 
-{
-    CALL <- mf <- match.call(expand.dots = FALSE)
-    tr <- function(string) gsub("^[[:space:]]+|[[:space:]]+$", 
-        "", string)
-    link <- match.arg(link)
-    if (length(formula) != 3) 
-        stop(paste(tr(deparse(formula)), collapse = " "), "is not a valid formula.")
-    else if (substring(deparse(formula)[1], 1, 5) != "cbind") 
-        stop(paste(tr(deparse(formula)), collapse = ""), " is not a valid formula.\n", 
-            "The response must be a matrix of the form cbind(success, failure)")
-    if (length(random) == 3) {
-        form <- deparse(random)
-        warning("The formula for phi (", form, ") contains a response which is ignored.")
-        random <- random[-2]
-    }
-    explain <- as.character(attr(terms(random), "variables"))[-1]
-    if (length(explain) > 1) {
-        warning("The formula for phi contains several explanatory variables (", 
-            paste(explain, collapse = ", "), ").\n", "Only the first one (", 
-            explain[1], ") was considered.")
-        explain <- explain[1]
-    }
-    gf3 <- if (length(explain) == 1) 
-        paste(as.character(formula[3]), explain, sep = " + ")
-    else as.character(formula[3])
-    gf <- formula(paste(formula[2], "~", gf3))
-    if (missing(data)) 
-        data <- environment(gf)
-    mb <- match(c("formula", "data", "na.action"), names(mf), 
-        0)
-    mfb <- mf[c(1, mb)]
-    mfb$drop.unused.levels <- TRUE
-    mfb[[1]] <- as.name("model.frame")
-    names(mfb)[2] <- "formula"
-    mfb <- eval(mfb, parent.frame())
-    mt <- attr(mfb, "terms")
-    modmatrix.b <- if (!is.empty.model(mt)) 
-        model.matrix(mt, mfb)
-    else matrix(, NROW(Y), 0)
-    Y <- model.response(mfb, "numeric")
-    weights <- model.weights(mfb)
-    if (!is.null(weights) && any(weights < 0)) 
-        stop("Negative wts not allowed")
-    n <- rowSums(Y)
-    y <- Y[, 1]
-    if (any(n == 0)) 
-        warning("The data set contains at least one line with weight = 0.\n")
-    mr <- match(c("random", "data", "na.action"), names(mf), 
-        0)
-    mr <- mf[c(1, mr)]
-    mr$drop.unused.levels <- TRUE
-    mr[[1]] <- as.name("model.frame")
-    names(mr)[2] <- "formula"
-    mr <- eval(mr, parent.frame())
-    if (length(explain) == 0) 
-        modmatrix.phi <- model.matrix(object = ~1, data = mr)
-    else {
-        express <- paste("model.matrix(object = ~ -1 + ", explain, 
-            ", data = mr", ", contrasts = list(", explain, " = 'contr.treatment'))", 
-            sep = "")
-        if (is.ordered(data[, match(explain, table = names(mr))])) 
-            warning(explain, " is an ordered factor.\n", "Treatment contrast was used to build model matrix for phi.")
-        modmatrix.phi <- eval(parse(text = express))
-    }
-    fam <- eval(parse(text = paste("binomial(link =", link, ")")))
-    fm <- glm(formula = formula, family = fam, data = data, na.action = na.action)
-    b <- coef(fm)
-    if (any(is.na(b))) {
-        print(nab <- b[is.na(b)])
-        stop("Initial values for the fixed effects contain at least one missing value.")
-    }
-    nb.b <- ncol(modmatrix.b)
-    nb.phi <- ncol(modmatrix.phi)
-    if (!is.null(phi.ini) && !(phi.ini < 1 & phi.ini > 0)) 
-        stop("phi.ini was set to ", phi.ini, ".\nphi.ini should verify 0 < phi.ini < 1")
-    else if (is.null(phi.ini)) 
-        phi.ini <- rep(0.1, nb.phi)
-    param.ini <- c(b, phi.ini)
-    if (!is.null(unlist(fixpar))) 
-        param.ini[fixpar[[1]]] <- fixpar[[2]]
-    minuslogL <- function(param) {
-        if (!is.null(unlist(fixpar))) 
-            param[fixpar[[1]]] <- fixpar[[2]]
-        b <- param[1:nb.b]
-        eta <- as.vector(modmatrix.b %*% b)
-        p <- invlink(eta, type = link)
-        phi <- as.vector(modmatrix.phi %*% param[(nb.b + 1):(nb.b + 
-            nb.phi)])
-        cnd <- phi == 0
-        f1 <- dbinom(x = y[cnd], size = n[cnd], prob = p[cnd], 
-            log = TRUE)
-        n2 <- n[!cnd]
-        y2 <- y[!cnd]
-        p2 <- p[!cnd]
-        phi2 <- phi[!cnd]
-        f2 <- lchoose(n2, y2) + lbeta(p2 * (1 - phi2)/phi2 + 
-            y2, (1 - p2) * (1 - phi2)/phi2 + n2 - y2) - lbeta(p2 * 
-            (1 - phi2)/phi2, (1 - p2) * (1 - phi2)/phi2)
-        fn <- sum(c(f1, f2))
-        if (!is.finite(fn)) 
-            fn <- -1e+20
-        -fn
-    }
-    withWarnings <- function(expr) {
-        myWarnings <- NULL
-        wHandler <- function(w) {
-            myWarnings <<- c(myWarnings, list(w))
-            invokeRestart("muffleWarning")
-        }
-        val <- withCallingHandlers(expr, warning = wHandler)
-        list(value = val, warnings = myWarnings)
-    }
-    reswarn <- withWarnings(optim(par = param.ini, fn = minuslogL, 
-        hessian = hessian, control = control, ...))
-    res <- reswarn$value
-    if (warnings) {
-        if (length(reswarn$warnings) > 0) {
-            v <- unlist(lapply(reswarn$warnings, as.character))
-            tv <- data.frame(message = v, freq = rep(1, length(v)))
-            cat("Warnings during likelihood maximisation:\n")
-            print(aggregate(tv[, "freq", drop = FALSE], list(warning = tv$message), 
-                sum))
-        }
-    }
-    param <- res$par
-    namb <- colnames(modmatrix.b)
-    namphi <- paste("phi", colnames(modmatrix.phi), sep = ".")
-    nam <- c(namb, namphi)
-    names(param) <- nam
-    if (!is.null(unlist(fixpar))) 
-        param[fixpar[[1]]] <- fixpar[[2]]
-    H <- H.singular <- Hr.singular <- NA
-    varparam <- matrix(NA)
-    is.singular <- function(X) qr(X)$rank < nrow(as.matrix(X))
-    if (hessian) {
-        H <- res$hessian
-        if (is.null(unlist(fixpar))) {
-            H.singular <- is.singular(H)
-            if (!H.singular) 
-                varparam <- qr.solve(H)
-            else warning("The hessian matrix was singular.\n")
-        }
-        else {
-            idparam <- 1:(nb.b + nb.phi)
-            idestim <- idparam[-fixpar[[1]]]
-            Hr <- as.matrix(H[-fixpar[[1]], -fixpar[[1]]])
-            H.singular <- is.singular(Hr)
-            if (!H.singular) {
-                Vr <- solve(Hr)
-                dimnames(Vr) <- list(idestim, idestim)
-                varparam <- matrix(rep(NA, NROW(H) * NCOL(H)), 
-                  ncol = NCOL(H))
-                varparam[idestim, idestim] <- Vr
-            }
-        }
-    }
-    else varparam <- matrix(NA)
-    if (any(!is.na(varparam))) 
-        dimnames(varparam) <- list(nam, nam)
-    nbpar <- if (is.null(unlist(fixpar))) 
-        sum(!is.na(param))
-    else sum(!is.na(param[-fixpar[[1]]]))
-    logL.max <- sum(dbinom(x = y, size = n, prob = y/n, log = TRUE))
-    logL <- -res$value
-    dev <- -2 * (logL - logL.max)
-    df.residual <- sum(n > 0) - nbpar
-    iterations <- res$counts[1]
-    code <- res$convergence
-    msg <- if (!is.null(res$message)) 
-        res$message
-    else character(0)
-    if (code != 0) 
-        warning("\nPossible convergence problem. Optimization process code: ", 
-            code, " (see ?optim).\n")
-    new(Class = "glimML", CALL = CALL, link = link, method = "BB", 
-        data = data, formula = formula, random = random, param = param, 
-        varparam = varparam, fixed.param = param[seq(along = namb)], 
-        random.param = param[-seq(along = namb)], logL = logL, 
-        logL.max = logL.max, dev = dev, df.residual = df.residual, 
-        nbpar = nbpar, iterations = iterations, code = code, 
-        msg = msg, singular.hessian = as.numeric(H.singular), 
-        param.ini = param.ini, na.action = na.action)
-}
-
-invlink <- function (x, type = c("cloglog", "log", "logit", "probit")) 
-{
-    switch(type, logit = plogis(x), probit = pnorm(x), log = exp(x), cloglog = 1 - 
-        exp(-exp(x)))
-}
-
-link <- function (x, type = c("cloglog", "log", "logit", "probit")) 
-{
-    switch(type, logit = qlogis(x), probit = qnorm(x), 
-    log = log(x), cloglog = log(-log(1 - x)))
-}
-
-
-pr <- function (object, ...) 
-{
-    .local <- function (object, newdata = NULL, type = c("response", 
-        "link"), se.fit = FALSE, ...) 
-    {
-        type <- match.arg(type)
-        mf <- object@CALL
-        b <- coef(object)
-        f <- object@formula[-2]
-        data <- object@data
-        offset <- NULL
-        if (is.null(newdata)) {
-            mb <- match(c("formula", "data", "na.action"), names(mf), 
-                0)
-            mfb <- mf[c(1, mb)]
-            mfb$drop.unused.levels <- TRUE
-            mfb[[1]] <- as.name("model.frame")
-            names(mfb)[2] <- "formula"
-            mfb <- eval(mfb, parent.frame())
-            mt <- attr(mfb, "terms")
-            Y <- model.response(mfb, "numeric")
-            X <- if (!is.empty.model(mt)) 
-                model.matrix(mt, mfb, contrasts)
-            else matrix(, NROW(Y), 0)
-            offset <- model.offset(mfb)
-        }
-        else {
-            mfb <- model.frame(f, newdata)
-            offset <- model.offset(mfb)
-            X <- model.matrix(object = f, data = newdata)
-        }
-        eta <- as.vector(X %*% b)
-        eta <- if (is.null(offset)) 
-            eta
-        else eta + offset
-        varparam <- object@varparam
-        varb <- as.matrix(varparam[seq(length(b)), seq(length(b))])
-        vareta <- X %*% varb %*% t(X)
-        if (type == "response") {
-            p <- invlink(eta, type = object@link)
-            J <- switch(object@link, logit = diag(p * (1 - p), 
-                nrow = length(p)), probit = diag(dnorm( qnorm(p) ), 
-                nrow = length(p)), cloglog = diag(-(1 - p) * 
-                log(1 - p), nrow = length(p)), log = diag(p, 
-                nrow = length(p)))
-            varp <- J %*% vareta %*% J
-            se.p <- sqrt(diag(varp))
-        }
-        se.eta <- sqrt(diag(vareta))
-        if (!se.fit) 
-            res <- switch(type, response = p, link = eta)
-        else res <- switch(type, response = list(fit = p, se.fit = se.p), 
-            link = list(fit = eta, se.fit = se.eta))
-        res
-    }
-    .local(object, ...)
-}
-
-setMethod(predict, "glimML", pr)
-setMethod(fitted, "glimML", function (object, ...) {
-    mf <- object@CALL
-    mb <- match(c("formula", "data", "na.action"), names(mf), 
-        0)
-    mfb <- mf[c(1, mb)]
-    mfb$drop.unused.levels <- TRUE
-    mfb[[1]] <- as.name("model.frame")
-    names(mfb)[2] <- "formula"
-    mfb <- eval(mfb, parent.frame())
-    mt <- attr(mfb, "terms")
-    Y <- model.response(mfb, "numeric")
-    X <- if (!is.empty.model(mt)) 
-        model.matrix(mt, mfb, contrasts)
-    else matrix(, NROW(Y), 0)
-    offset <- model.offset(mfb)
-    b <- coef(object)
-    eta <- as.vector(X %*% b)
-    eta <- if (is.null(offset)) 
-        eta
-    else eta + offset
-    invlink(eta, type = object@link)
-}
-)
diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint.R
deleted file mode 100644
index 410fdd1141c305967079963af1f5665275c3b0fd..0000000000000000000000000000000000000000
--- a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint.R
+++ /dev/null
@@ -1,14 +0,0 @@
-library('aod')
-args <- commandArgs(trailingOnly=TRUE)
-source(paste(args,'multiarea_model/data_multiarea/bbAlt.R', sep=""))
-f <- file(paste(args,'multiarea_model/data_multiarea/raw_data/RData_prepared_logdensities.txt', sep=""),'r')
-x <- read.table(f)
-close(f)
-
-
-dens <- data.matrix(x)[,7]
-
-m2.bb <- betabin(cbind(S, I) ~ dens , ~ 1, data = x, "probit", control = list(maxit = 100000))
-h2.bb <- c(coef(m2.bb))
-
-print(h2.bb)
diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint.R
deleted file mode 100644
index 6aa3d5eab91649f69cee522c44aa84468fecc7b9..0000000000000000000000000000000000000000
--- a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint.R
+++ /dev/null
@@ -1,289 +0,0 @@
-# Script provided by Kenneth Knoblauch
-# This code is based on functions from the aod package of R written by
-# Matthieu Lesnoff and Renaud Lancelot
-# (https://cran.r-project.org/web/packages/aod/index.html), published
-# under the GPL-3 license
-# (https://cran.r-project.org/web/licenses/GPL-3).
-
-betabin <- function (formula, random, data = NULL, link = c("logit", "probit", "cloglog"), 
-    phi.ini = NULL, warnings = FALSE, na.action = na.omit, fixpar = list(), 
-    hessian = TRUE, control = list(maxit = 2000), ...) 
-{
-    CALL <- mf <- match.call(expand.dots = FALSE)
-    tr <- function(string) gsub("^[[:space:]]+|[[:space:]]+$", 
-        "", string)
-    link <- match.arg(link)
-    if (length(formula) != 3) 
-        stop(paste(tr(deparse(formula)), collapse = " "), "is not a valid formula.")
-    else if (substring(deparse(formula)[1], 1, 5) != "cbind") 
-        stop(paste(tr(deparse(formula)), collapse = ""), " is not a valid formula.\n", 
-            "The response must be a matrix of the form cbind(success, failure)")
-    if (length(random) == 3) {
-        form <- deparse(random)
-        warning("The formula for phi (", form, ") contains a response which is ignored.")
-        random <- random[-2]
-    }
-    explain <- as.character(attr(terms(random), "variables"))[-1]
-    if (length(explain) > 1) {
-        warning("The formula for phi contains several explanatory variables (", 
-            paste(explain, collapse = ", "), ").\n", "Only the first one (", 
-            explain[1], ") was considered.")
-        explain <- explain[1]
-    }
-    gf3 <- if (length(explain) == 1) 
-        paste(as.character(formula[3]), explain, sep = " + ")
-    else as.character(formula[3])
-    gf <- formula(paste(formula[2], "~", gf3))
-    if (missing(data)) 
-        data <- environment(gf)
-    mb <- match(c("formula", "data", "na.action"), names(mf), 
-        0)
-    mfb <- mf[c(1, mb)]
-    mfb$drop.unused.levels <- TRUE
-    mfb[[1]] <- as.name("model.frame")
-    names(mfb)[2] <- "formula"
-    mfb <- eval(mfb, parent.frame())
-    mt <- attr(mfb, "terms")
-    modmatrix.b <- if (!is.empty.model(mt)) 
-        model.matrix(mt, mfb)
-    else matrix(, NROW(Y), 0)
-    Y <- model.response(mfb, "numeric")
-    weights <- model.weights(mfb)
-    if (!is.null(weights) && any(weights < 0)) 
-        stop("Negative wts not allowed")
-    n <- rowSums(Y)
-    y <- Y[, 1]
-    if (any(n == 0)) 
-        warning("The data set contains at least one line with weight = 0.\n")
-    mr <- match(c("random", "data", "na.action"), names(mf), 
-        0)
-    mr <- mf[c(1, mr)]
-    mr$drop.unused.levels <- TRUE
-    mr[[1]] <- as.name("model.frame")
-    names(mr)[2] <- "formula"
-    mr <- eval(mr, parent.frame())
-    if (length(explain) == 0) 
-        modmatrix.phi <- model.matrix(object = ~1, data = mr)
-    else {
-        express <- paste("model.matrix(object = ~ -1 + ", explain, 
-            ", data = mr", ", contrasts = list(", explain, " = 'contr.treatment'))", 
-            sep = "")
-        if (is.ordered(data[, match(explain, table = names(mr))])) 
-            warning(explain, " is an ordered factor.\n", "Treatment contrast was used to build model matrix for phi.")
-        modmatrix.phi <- eval(parse(text = express))
-    }
-    fam <- eval(parse(text = paste("binomial(link =", link, ")")))
-    fm <- glm(formula = formula, family = fam, data = data, na.action = na.action)
-    b <- coef(fm)
-    if (any(is.na(b))) {
-        print(nab <- b[is.na(b)])
-        stop("Initial values for the fixed effects contain at least one missing value.")
-    }
-    nb.b <- ncol(modmatrix.b)
-    nb.phi <- ncol(modmatrix.phi)
-    if (!is.null(phi.ini) && !(phi.ini < 1 & phi.ini > 0)) 
-        stop("phi.ini was set to ", phi.ini, ".\nphi.ini should verify 0 < phi.ini < 1")
-    else if (is.null(phi.ini)) 
-        phi.ini <- rep(0.1, nb.phi)
-    param.ini <- c(b, phi.ini)
-    if (!is.null(unlist(fixpar))) 
-        param.ini[fixpar[[1]]] <- fixpar[[2]]
-    minuslogL <- function(param) {
-        if (!is.null(unlist(fixpar))) 
-            param[fixpar[[1]]] <- fixpar[[2]]
-        b <- param[1:nb.b]
-        eta <- as.vector(modmatrix.b %*% b)
-        p <- invlink(eta, type = link)
-        phi <- as.vector(modmatrix.phi %*% param[(nb.b + 1):(nb.b + 
-            nb.phi)])
-        cnd <- phi == 0
-        f1 <- dbinom(x = y[cnd], size = n[cnd], prob = p[cnd], 
-            log = TRUE)
-        n2 <- n[!cnd]
-        y2 <- y[!cnd]
-        p2 <- p[!cnd]
-        phi2 <- phi[!cnd]
-        f2 <- lchoose(n2, y2) + lbeta(p2 * (1 - phi2)/phi2 + 
-            y2, (1 - p2) * (1 - phi2)/phi2 + n2 - y2) - lbeta(p2 * 
-            (1 - phi2)/phi2, (1 - p2) * (1 - phi2)/phi2)
-        fn <- sum(c(f1, f2))
-        if (!is.finite(fn)) 
-            fn <- -1e+20
-        -fn
-    }
-    withWarnings <- function(expr) {
-        myWarnings <- NULL
-        wHandler <- function(w) {
-            myWarnings <<- c(myWarnings, list(w))
-            invokeRestart("muffleWarning")
-        }
-        val <- withCallingHandlers(expr, warning = wHandler)
-        list(value = val, warnings = myWarnings)
-    }
-    reswarn <- withWarnings(optim(par = param.ini, fn = minuslogL, 
-        hessian = hessian, control = control, ...))
-    res <- reswarn$value
-    if (warnings) {
-        if (length(reswarn$warnings) > 0) {
-            v <- unlist(lapply(reswarn$warnings, as.character))
-            tv <- data.frame(message = v, freq = rep(1, length(v)))
-            cat("Warnings during likelihood maximisation:\n")
-            print(aggregate(tv[, "freq", drop = FALSE], list(warning = tv$message), 
-                sum))
-        }
-    }
-    param <- res$par
-    namb <- colnames(modmatrix.b)
-    namphi <- paste("phi", colnames(modmatrix.phi), sep = ".")
-    nam <- c(namb, namphi)
-    names(param) <- nam
-    if (!is.null(unlist(fixpar))) 
-        param[fixpar[[1]]] <- fixpar[[2]]
-    H <- H.singular <- Hr.singular <- NA
-    varparam <- matrix(NA)
-    is.singular <- function(X) qr(X)$rank < nrow(as.matrix(X))
-    if (hessian) {
-        H <- res$hessian
-        if (is.null(unlist(fixpar))) {
-            H.singular <- is.singular(H)
-            if (!H.singular) 
-                varparam <- qr.solve(H)
-            else warning("The hessian matrix was singular.\n")
-        }
-        else {
-            idparam <- 1:(nb.b + nb.phi)
-            idestim <- idparam[-fixpar[[1]]]
-            Hr <- as.matrix(H[-fixpar[[1]], -fixpar[[1]]])
-            H.singular <- is.singular(Hr)
-            if (!H.singular) {
-                Vr <- solve(Hr)
-                dimnames(Vr) <- list(idestim, idestim)
-                varparam <- matrix(rep(NA, NROW(H) * NCOL(H)), 
-                  ncol = NCOL(H))
-                varparam[idestim, idestim] <- Vr
-            }
-        }
-    }
-    else varparam <- matrix(NA)
-    if (any(!is.na(varparam))) 
-        dimnames(varparam) <- list(nam, nam)
-    nbpar <- if (is.null(unlist(fixpar))) 
-        sum(!is.na(param))
-    else sum(!is.na(param[-fixpar[[1]]]))
-    logL.max <- sum(dbinom(x = y, size = n, prob = y/n, log = TRUE))
-    logL <- -res$value
-    dev <- -2 * (logL - logL.max)
-    df.residual <- sum(n > 0) - nbpar
-    iterations <- res$counts[1]
-    code <- res$convergence
-    msg <- if (!is.null(res$message)) 
-        res$message
-    else character(0)
-    if (code != 0) 
-        warning("\nPossible convergence problem. Optimization process code: ", 
-            code, " (see ?optim).\n")
-    new(Class = "glimML", CALL = CALL, link = link, method = "BB", 
-        data = data, formula = formula, random = random, param = param, 
-        varparam = varparam, fixed.param = param[seq(along = namb)], 
-        random.param = param[-seq(along = namb)], logL = logL, 
-        logL.max = logL.max, dev = dev, df.residual = df.residual, 
-        nbpar = nbpar, iterations = iterations, code = code, 
-        msg = msg, singular.hessian = as.numeric(H.singular), 
-        param.ini = param.ini, na.action = na.action)
-}
-
-invlink <- function (x, type = c("cloglog", "log", "logit", "probit")) 
-{
-    switch(type, logit = plogis(x), probit = pnorm(x), log = exp(x), cloglog = 1 - 
-        exp(-exp(x)))
-}
-
-link <- function (x, type = c("cloglog", "log", "logit", "probit")) 
-{
-    switch(type, logit = qlogis(x), probit = qnorm(x), 
-    log = log(x), cloglog = log(-log(1 - x)))
-}
-
-
-pr <- function (object, ...) 
-{
-    .local <- function (object, newdata = NULL, type = c("response", 
-        "link"), se.fit = FALSE, ...) 
-    {
-        type <- match.arg(type)
-        mf <- object@CALL
-        b <- coef(object)
-        f <- object@formula[-2]
-        data <- object@data
-        offset <- NULL
-        if (is.null(newdata)) {
-            mb <- match(c("formula", "data", "na.action"), names(mf), 
-                0)
-            mfb <- mf[c(1, mb)]
-            mfb$drop.unused.levels <- TRUE
-            mfb[[1]] <- as.name("model.frame")
-            names(mfb)[2] <- "formula"
-            mfb <- eval(mfb, parent.frame())
-            mt <- attr(mfb, "terms")
-            Y <- model.response(mfb, "numeric")
-            X <- if (!is.empty.model(mt)) 
-                model.matrix(mt, mfb, contrasts)
-            else matrix(, NROW(Y), 0)
-            offset <- model.offset(mfb)
-        }
-        else {
-            mfb <- model.frame(f, newdata)
-            offset <- model.offset(mfb)
-            X <- model.matrix(object = f, data = newdata)
-        }
-        eta <- as.vector(X %*% b)
-        eta <- if (is.null(offset)) 
-            eta
-        else eta + offset
-        varparam <- object@varparam
-        varb <- as.matrix(varparam[seq(length(b)), seq(length(b))])
-        vareta <- X %*% varb %*% t(X)
-        if (type == "response") {
-            p <- invlink(eta, type = object@link)
-            J <- switch(object@link, logit = diag(p * (1 - p), 
-                nrow = length(p)), probit = diag(dnorm( qnorm(p) ), 
-                nrow = length(p)), cloglog = diag(-(1 - p) * 
-                log(1 - p), nrow = length(p)), log = diag(p, 
-                nrow = length(p)))
-            varp <- J %*% vareta %*% J
-            se.p <- sqrt(diag(varp))
-        }
-        se.eta <- sqrt(diag(vareta))
-        if (!se.fit) 
-            res <- switch(type, response = p, link = eta)
-        else res <- switch(type, response = list(fit = p, se.fit = se.p), 
-            link = list(fit = eta, se.fit = se.eta))
-        res
-    }
-    .local(object, ...)
-}
-
-setMethod(predict, "glimML", pr)
-setMethod(fitted, "glimML", function (object, ...) {
-    mf <- object@CALL
-    mb <- match(c("formula", "data", "na.action"), names(mf), 
-        0)
-    mfb <- mf[c(1, mb)]
-    mfb$drop.unused.levels <- TRUE
-    mfb[[1]] <- as.name("model.frame")
-    names(mfb)[2] <- "formula"
-    mfb <- eval(mfb, parent.frame())
-    mt <- attr(mfb, "terms")
-    Y <- model.response(mfb, "numeric")
-    X <- if (!is.empty.model(mt)) 
-        model.matrix(mt, mfb, contrasts)
-    else matrix(, NROW(Y), 0)
-    offset <- model.offset(mfb)
-    b <- coef(object)
-    eta <- as.vector(X %*% b)
-    eta <- if (is.null(offset)) 
-        eta
-    else eta + offset
-    invlink(eta, type = object@link)
-}
-)
diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint.R
deleted file mode 100644
index 410fdd1141c305967079963af1f5665275c3b0fd..0000000000000000000000000000000000000000
--- a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint.R
+++ /dev/null
@@ -1,14 +0,0 @@
-library('aod')
-args <- commandArgs(trailingOnly=TRUE)
-source(paste(args,'multiarea_model/data_multiarea/bbAlt.R', sep=""))
-f <- file(paste(args,'multiarea_model/data_multiarea/raw_data/RData_prepared_logdensities.txt', sep=""),'r')
-x <- read.table(f)
-close(f)
-
-
-dens <- data.matrix(x)[,7]
-
-m2.bb <- betabin(cbind(S, I) ~ dens , ~ 1, data = x, "probit", control = list(maxit = 100000))
-h2.bb <- c(coef(m2.bb))
-
-print(h2.bb)
diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint.R
deleted file mode 100644
index 6aa3d5eab91649f69cee522c44aa84468fecc7b9..0000000000000000000000000000000000000000
--- a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint.R
+++ /dev/null
@@ -1,289 +0,0 @@
-# Script provided by Kenneth Knoblauch
-# This code is based on functions from the aod package of R written by
-# Matthieu Lesnoff and Renaud Lancelot
-# (https://cran.r-project.org/web/packages/aod/index.html), published
-# under the GPL-3 license
-# (https://cran.r-project.org/web/licenses/GPL-3).
-
-betabin <- function (formula, random, data = NULL, link = c("logit", "probit", "cloglog"), 
-    phi.ini = NULL, warnings = FALSE, na.action = na.omit, fixpar = list(), 
-    hessian = TRUE, control = list(maxit = 2000), ...) 
-{
-    CALL <- mf <- match.call(expand.dots = FALSE)
-    tr <- function(string) gsub("^[[:space:]]+|[[:space:]]+$", 
-        "", string)
-    link <- match.arg(link)
-    if (length(formula) != 3) 
-        stop(paste(tr(deparse(formula)), collapse = " "), "is not a valid formula.")
-    else if (substring(deparse(formula)[1], 1, 5) != "cbind") 
-        stop(paste(tr(deparse(formula)), collapse = ""), " is not a valid formula.\n", 
-            "The response must be a matrix of the form cbind(success, failure)")
-    if (length(random) == 3) {
-        form <- deparse(random)
-        warning("The formula for phi (", form, ") contains a response which is ignored.")
-        random <- random[-2]
-    }
-    explain <- as.character(attr(terms(random), "variables"))[-1]
-    if (length(explain) > 1) {
-        warning("The formula for phi contains several explanatory variables (", 
-            paste(explain, collapse = ", "), ").\n", "Only the first one (", 
-            explain[1], ") was considered.")
-        explain <- explain[1]
-    }
-    gf3 <- if (length(explain) == 1) 
-        paste(as.character(formula[3]), explain, sep = " + ")
-    else as.character(formula[3])
-    gf <- formula(paste(formula[2], "~", gf3))
-    if (missing(data)) 
-        data <- environment(gf)
-    mb <- match(c("formula", "data", "na.action"), names(mf), 
-        0)
-    mfb <- mf[c(1, mb)]
-    mfb$drop.unused.levels <- TRUE
-    mfb[[1]] <- as.name("model.frame")
-    names(mfb)[2] <- "formula"
-    mfb <- eval(mfb, parent.frame())
-    mt <- attr(mfb, "terms")
-    modmatrix.b <- if (!is.empty.model(mt)) 
-        model.matrix(mt, mfb)
-    else matrix(, NROW(Y), 0)
-    Y <- model.response(mfb, "numeric")
-    weights <- model.weights(mfb)
-    if (!is.null(weights) && any(weights < 0)) 
-        stop("Negative wts not allowed")
-    n <- rowSums(Y)
-    y <- Y[, 1]
-    if (any(n == 0)) 
-        warning("The data set contains at least one line with weight = 0.\n")
-    mr <- match(c("random", "data", "na.action"), names(mf), 
-        0)
-    mr <- mf[c(1, mr)]
-    mr$drop.unused.levels <- TRUE
-    mr[[1]] <- as.name("model.frame")
-    names(mr)[2] <- "formula"
-    mr <- eval(mr, parent.frame())
-    if (length(explain) == 0) 
-        modmatrix.phi <- model.matrix(object = ~1, data = mr)
-    else {
-        express <- paste("model.matrix(object = ~ -1 + ", explain, 
-            ", data = mr", ", contrasts = list(", explain, " = 'contr.treatment'))", 
-            sep = "")
-        if (is.ordered(data[, match(explain, table = names(mr))])) 
-            warning(explain, " is an ordered factor.\n", "Treatment contrast was used to build model matrix for phi.")
-        modmatrix.phi <- eval(parse(text = express))
-    }
-    fam <- eval(parse(text = paste("binomial(link =", link, ")")))
-    fm <- glm(formula = formula, family = fam, data = data, na.action = na.action)
-    b <- coef(fm)
-    if (any(is.na(b))) {
-        print(nab <- b[is.na(b)])
-        stop("Initial values for the fixed effects contain at least one missing value.")
-    }
-    nb.b <- ncol(modmatrix.b)
-    nb.phi <- ncol(modmatrix.phi)
-    if (!is.null(phi.ini) && !(phi.ini < 1 & phi.ini > 0)) 
-        stop("phi.ini was set to ", phi.ini, ".\nphi.ini should verify 0 < phi.ini < 1")
-    else if (is.null(phi.ini)) 
-        phi.ini <- rep(0.1, nb.phi)
-    param.ini <- c(b, phi.ini)
-    if (!is.null(unlist(fixpar))) 
-        param.ini[fixpar[[1]]] <- fixpar[[2]]
-    minuslogL <- function(param) {
-        if (!is.null(unlist(fixpar))) 
-            param[fixpar[[1]]] <- fixpar[[2]]
-        b <- param[1:nb.b]
-        eta <- as.vector(modmatrix.b %*% b)
-        p <- invlink(eta, type = link)
-        phi <- as.vector(modmatrix.phi %*% param[(nb.b + 1):(nb.b + 
-            nb.phi)])
-        cnd <- phi == 0
-        f1 <- dbinom(x = y[cnd], size = n[cnd], prob = p[cnd], 
-            log = TRUE)
-        n2 <- n[!cnd]
-        y2 <- y[!cnd]
-        p2 <- p[!cnd]
-        phi2 <- phi[!cnd]
-        f2 <- lchoose(n2, y2) + lbeta(p2 * (1 - phi2)/phi2 + 
-            y2, (1 - p2) * (1 - phi2)/phi2 + n2 - y2) - lbeta(p2 * 
-            (1 - phi2)/phi2, (1 - p2) * (1 - phi2)/phi2)
-        fn <- sum(c(f1, f2))
-        if (!is.finite(fn)) 
-            fn <- -1e+20
-        -fn
-    }
-    withWarnings <- function(expr) {
-        myWarnings <- NULL
-        wHandler <- function(w) {
-            myWarnings <<- c(myWarnings, list(w))
-            invokeRestart("muffleWarning")
-        }
-        val <- withCallingHandlers(expr, warning = wHandler)
-        list(value = val, warnings = myWarnings)
-    }
-    reswarn <- withWarnings(optim(par = param.ini, fn = minuslogL, 
-        hessian = hessian, control = control, ...))
-    res <- reswarn$value
-    if (warnings) {
-        if (length(reswarn$warnings) > 0) {
-            v <- unlist(lapply(reswarn$warnings, as.character))
-            tv <- data.frame(message = v, freq = rep(1, length(v)))
-            cat("Warnings during likelihood maximisation:\n")
-            print(aggregate(tv[, "freq", drop = FALSE], list(warning = tv$message), 
-                sum))
-        }
-    }
-    param <- res$par
-    namb <- colnames(modmatrix.b)
-    namphi <- paste("phi", colnames(modmatrix.phi), sep = ".")
-    nam <- c(namb, namphi)
-    names(param) <- nam
-    if (!is.null(unlist(fixpar))) 
-        param[fixpar[[1]]] <- fixpar[[2]]
-    H <- H.singular <- Hr.singular <- NA
-    varparam <- matrix(NA)
-    is.singular <- function(X) qr(X)$rank < nrow(as.matrix(X))
-    if (hessian) {
-        H <- res$hessian
-        if (is.null(unlist(fixpar))) {
-            H.singular <- is.singular(H)
-            if (!H.singular) 
-                varparam <- qr.solve(H)
-            else warning("The hessian matrix was singular.\n")
-        }
-        else {
-            idparam <- 1:(nb.b + nb.phi)
-            idestim <- idparam[-fixpar[[1]]]
-            Hr <- as.matrix(H[-fixpar[[1]], -fixpar[[1]]])
-            H.singular <- is.singular(Hr)
-            if (!H.singular) {
-                Vr <- solve(Hr)
-                dimnames(Vr) <- list(idestim, idestim)
-                varparam <- matrix(rep(NA, NROW(H) * NCOL(H)), 
-                  ncol = NCOL(H))
-                varparam[idestim, idestim] <- Vr
-            }
-        }
-    }
-    else varparam <- matrix(NA)
-    if (any(!is.na(varparam))) 
-        dimnames(varparam) <- list(nam, nam)
-    nbpar <- if (is.null(unlist(fixpar))) 
-        sum(!is.na(param))
-    else sum(!is.na(param[-fixpar[[1]]]))
-    logL.max <- sum(dbinom(x = y, size = n, prob = y/n, log = TRUE))
-    logL <- -res$value
-    dev <- -2 * (logL - logL.max)
-    df.residual <- sum(n > 0) - nbpar
-    iterations <- res$counts[1]
-    code <- res$convergence
-    msg <- if (!is.null(res$message)) 
-        res$message
-    else character(0)
-    if (code != 0) 
-        warning("\nPossible convergence problem. Optimization process code: ", 
-            code, " (see ?optim).\n")
-    new(Class = "glimML", CALL = CALL, link = link, method = "BB", 
-        data = data, formula = formula, random = random, param = param, 
-        varparam = varparam, fixed.param = param[seq(along = namb)], 
-        random.param = param[-seq(along = namb)], logL = logL, 
-        logL.max = logL.max, dev = dev, df.residual = df.residual, 
-        nbpar = nbpar, iterations = iterations, code = code, 
-        msg = msg, singular.hessian = as.numeric(H.singular), 
-        param.ini = param.ini, na.action = na.action)
-}
-
-invlink <- function (x, type = c("cloglog", "log", "logit", "probit")) 
-{
-    switch(type, logit = plogis(x), probit = pnorm(x), log = exp(x), cloglog = 1 - 
-        exp(-exp(x)))
-}
-
-link <- function (x, type = c("cloglog", "log", "logit", "probit")) 
-{
-    switch(type, logit = qlogis(x), probit = qnorm(x), 
-    log = log(x), cloglog = log(-log(1 - x)))
-}
-
-
-pr <- function (object, ...) 
-{
-    .local <- function (object, newdata = NULL, type = c("response", 
-        "link"), se.fit = FALSE, ...) 
-    {
-        type <- match.arg(type)
-        mf <- object@CALL
-        b <- coef(object)
-        f <- object@formula[-2]
-        data <- object@data
-        offset <- NULL
-        if (is.null(newdata)) {
-            mb <- match(c("formula", "data", "na.action"), names(mf), 
-                0)
-            mfb <- mf[c(1, mb)]
-            mfb$drop.unused.levels <- TRUE
-            mfb[[1]] <- as.name("model.frame")
-            names(mfb)[2] <- "formula"
-            mfb <- eval(mfb, parent.frame())
-            mt <- attr(mfb, "terms")
-            Y <- model.response(mfb, "numeric")
-            X <- if (!is.empty.model(mt)) 
-                model.matrix(mt, mfb, contrasts)
-            else matrix(, NROW(Y), 0)
-            offset <- model.offset(mfb)
-        }
-        else {
-            mfb <- model.frame(f, newdata)
-            offset <- model.offset(mfb)
-            X <- model.matrix(object = f, data = newdata)
-        }
-        eta <- as.vector(X %*% b)
-        eta <- if (is.null(offset)) 
-            eta
-        else eta + offset
-        varparam <- object@varparam
-        varb <- as.matrix(varparam[seq(length(b)), seq(length(b))])
-        vareta <- X %*% varb %*% t(X)
-        if (type == "response") {
-            p <- invlink(eta, type = object@link)
-            J <- switch(object@link, logit = diag(p * (1 - p), 
-                nrow = length(p)), probit = diag(dnorm( qnorm(p) ), 
-                nrow = length(p)), cloglog = diag(-(1 - p) * 
-                log(1 - p), nrow = length(p)), log = diag(p, 
-                nrow = length(p)))
-            varp <- J %*% vareta %*% J
-            se.p <- sqrt(diag(varp))
-        }
-        se.eta <- sqrt(diag(vareta))
-        if (!se.fit) 
-            res <- switch(type, response = p, link = eta)
-        else res <- switch(type, response = list(fit = p, se.fit = se.p), 
-            link = list(fit = eta, se.fit = se.eta))
-        res
-    }
-    .local(object, ...)
-}
-
-setMethod(predict, "glimML", pr)
-setMethod(fitted, "glimML", function (object, ...) {
-    mf <- object@CALL
-    mb <- match(c("formula", "data", "na.action"), names(mf), 
-        0)
-    mfb <- mf[c(1, mb)]
-    mfb$drop.unused.levels <- TRUE
-    mfb[[1]] <- as.name("model.frame")
-    names(mfb)[2] <- "formula"
-    mfb <- eval(mfb, parent.frame())
-    mt <- attr(mfb, "terms")
-    Y <- model.response(mfb, "numeric")
-    X <- if (!is.empty.model(mt)) 
-        model.matrix(mt, mfb, contrasts)
-    else matrix(, NROW(Y), 0)
-    offset <- model.offset(mfb)
-    b <- coef(object)
-    eta <- as.vector(X %*% b)
-    eta <- if (is.null(offset)) 
-        eta
-    else eta + offset
-    invlink(eta, type = object@link)
-}
-)
diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/SLN_logdensities-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/SLN_logdensities-checkpoint.R
deleted file mode 100644
index 410fdd1141c305967079963af1f5665275c3b0fd..0000000000000000000000000000000000000000
--- a/multiarea_model/data_multiarea/.ipynb_checkpoints/SLN_logdensities-checkpoint.R
+++ /dev/null
@@ -1,14 +0,0 @@
-library('aod')
-args <- commandArgs(trailingOnly=TRUE)
-source(paste(args,'multiarea_model/data_multiarea/bbAlt.R', sep=""))
-f <- file(paste(args,'multiarea_model/data_multiarea/raw_data/RData_prepared_logdensities.txt', sep=""),'r')
-x <- read.table(f)
-close(f)
-
-
-dens <- data.matrix(x)[,7]
-
-m2.bb <- betabin(cbind(S, I) ~ dens , ~ 1, data = x, "probit", control = list(maxit = 100000))
-h2.bb <- c(coef(m2.bb))
-
-print(h2.bb)
diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/bbAlt-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/bbAlt-checkpoint.R
deleted file mode 100644
index 6aa3d5eab91649f69cee522c44aa84468fecc7b9..0000000000000000000000000000000000000000
--- a/multiarea_model/data_multiarea/.ipynb_checkpoints/bbAlt-checkpoint.R
+++ /dev/null
@@ -1,289 +0,0 @@
-# Script provided by Kenneth Knoblauch
-# This code is based on functions from the aod package of R written by
-# Matthieu Lesnoff and Renaud Lancelot
-# (https://cran.r-project.org/web/packages/aod/index.html), published
-# under the GPL-3 license
-# (https://cran.r-project.org/web/licenses/GPL-3).
-
-betabin <- function (formula, random, data = NULL, link = c("logit", "probit", "cloglog"), 
-    phi.ini = NULL, warnings = FALSE, na.action = na.omit, fixpar = list(), 
-    hessian = TRUE, control = list(maxit = 2000), ...) 
-{
-    CALL <- mf <- match.call(expand.dots = FALSE)
-    tr <- function(string) gsub("^[[:space:]]+|[[:space:]]+$", 
-        "", string)
-    link <- match.arg(link)
-    if (length(formula) != 3) 
-        stop(paste(tr(deparse(formula)), collapse = " "), "is not a valid formula.")
-    else if (substring(deparse(formula)[1], 1, 5) != "cbind") 
-        stop(paste(tr(deparse(formula)), collapse = ""), " is not a valid formula.\n", 
-            "The response must be a matrix of the form cbind(success, failure)")
-    if (length(random) == 3) {
-        form <- deparse(random)
-        warning("The formula for phi (", form, ") contains a response which is ignored.")
-        random <- random[-2]
-    }
-    explain <- as.character(attr(terms(random), "variables"))[-1]
-    if (length(explain) > 1) {
-        warning("The formula for phi contains several explanatory variables (", 
-            paste(explain, collapse = ", "), ").\n", "Only the first one (", 
-            explain[1], ") was considered.")
-        explain <- explain[1]
-    }
-    gf3 <- if (length(explain) == 1) 
-        paste(as.character(formula[3]), explain, sep = " + ")
-    else as.character(formula[3])
-    gf <- formula(paste(formula[2], "~", gf3))
-    if (missing(data)) 
-        data <- environment(gf)
-    mb <- match(c("formula", "data", "na.action"), names(mf), 
-        0)
-    mfb <- mf[c(1, mb)]
-    mfb$drop.unused.levels <- TRUE
-    mfb[[1]] <- as.name("model.frame")
-    names(mfb)[2] <- "formula"
-    mfb <- eval(mfb, parent.frame())
-    mt <- attr(mfb, "terms")
-    modmatrix.b <- if (!is.empty.model(mt)) 
-        model.matrix(mt, mfb)
-    else matrix(, NROW(Y), 0)
-    Y <- model.response(mfb, "numeric")
-    weights <- model.weights(mfb)
-    if (!is.null(weights) && any(weights < 0)) 
-        stop("Negative wts not allowed")
-    n <- rowSums(Y)
-    y <- Y[, 1]
-    if (any(n == 0)) 
-        warning("The data set contains at least one line with weight = 0.\n")
-    mr <- match(c("random", "data", "na.action"), names(mf), 
-        0)
-    mr <- mf[c(1, mr)]
-    mr$drop.unused.levels <- TRUE
-    mr[[1]] <- as.name("model.frame")
-    names(mr)[2] <- "formula"
-    mr <- eval(mr, parent.frame())
-    if (length(explain) == 0) 
-        modmatrix.phi <- model.matrix(object = ~1, data = mr)
-    else {
-        express <- paste("model.matrix(object = ~ -1 + ", explain, 
-            ", data = mr", ", contrasts = list(", explain, " = 'contr.treatment'))", 
-            sep = "")
-        if (is.ordered(data[, match(explain, table = names(mr))])) 
-            warning(explain, " is an ordered factor.\n", "Treatment contrast was used to build model matrix for phi.")
-        modmatrix.phi <- eval(parse(text = express))
-    }
-    fam <- eval(parse(text = paste("binomial(link =", link, ")")))
-    fm <- glm(formula = formula, family = fam, data = data, na.action = na.action)
-    b <- coef(fm)
-    if (any(is.na(b))) {
-        print(nab <- b[is.na(b)])
-        stop("Initial values for the fixed effects contain at least one missing value.")
-    }
-    nb.b <- ncol(modmatrix.b)
-    nb.phi <- ncol(modmatrix.phi)
-    if (!is.null(phi.ini) && !(phi.ini < 1 & phi.ini > 0)) 
-        stop("phi.ini was set to ", phi.ini, ".\nphi.ini should verify 0 < phi.ini < 1")
-    else if (is.null(phi.ini)) 
-        phi.ini <- rep(0.1, nb.phi)
-    param.ini <- c(b, phi.ini)
-    if (!is.null(unlist(fixpar))) 
-        param.ini[fixpar[[1]]] <- fixpar[[2]]
-    minuslogL <- function(param) {
-        if (!is.null(unlist(fixpar))) 
-            param[fixpar[[1]]] <- fixpar[[2]]
-        b <- param[1:nb.b]
-        eta <- as.vector(modmatrix.b %*% b)
-        p <- invlink(eta, type = link)
-        phi <- as.vector(modmatrix.phi %*% param[(nb.b + 1):(nb.b + 
-            nb.phi)])
-        cnd <- phi == 0
-        f1 <- dbinom(x = y[cnd], size = n[cnd], prob = p[cnd], 
-            log = TRUE)
-        n2 <- n[!cnd]
-        y2 <- y[!cnd]
-        p2 <- p[!cnd]
-        phi2 <- phi[!cnd]
-        f2 <- lchoose(n2, y2) + lbeta(p2 * (1 - phi2)/phi2 + 
-            y2, (1 - p2) * (1 - phi2)/phi2 + n2 - y2) - lbeta(p2 * 
-            (1 - phi2)/phi2, (1 - p2) * (1 - phi2)/phi2)
-        fn <- sum(c(f1, f2))
-        if (!is.finite(fn)) 
-            fn <- -1e+20
-        -fn
-    }
-    withWarnings <- function(expr) {
-        myWarnings <- NULL
-        wHandler <- function(w) {
-            myWarnings <<- c(myWarnings, list(w))
-            invokeRestart("muffleWarning")
-        }
-        val <- withCallingHandlers(expr, warning = wHandler)
-        list(value = val, warnings = myWarnings)
-    }
-    reswarn <- withWarnings(optim(par = param.ini, fn = minuslogL, 
-        hessian = hessian, control = control, ...))
-    res <- reswarn$value
-    if (warnings) {
-        if (length(reswarn$warnings) > 0) {
-            v <- unlist(lapply(reswarn$warnings, as.character))
-            tv <- data.frame(message = v, freq = rep(1, length(v)))
-            cat("Warnings during likelihood maximisation:\n")
-            print(aggregate(tv[, "freq", drop = FALSE], list(warning = tv$message), 
-                sum))
-        }
-    }
-    param <- res$par
-    namb <- colnames(modmatrix.b)
-    namphi <- paste("phi", colnames(modmatrix.phi), sep = ".")
-    nam <- c(namb, namphi)
-    names(param) <- nam
-    if (!is.null(unlist(fixpar))) 
-        param[fixpar[[1]]] <- fixpar[[2]]
-    H <- H.singular <- Hr.singular <- NA
-    varparam <- matrix(NA)
-    is.singular <- function(X) qr(X)$rank < nrow(as.matrix(X))
-    if (hessian) {
-        H <- res$hessian
-        if (is.null(unlist(fixpar))) {
-            H.singular <- is.singular(H)
-            if (!H.singular) 
-                varparam <- qr.solve(H)
-            else warning("The hessian matrix was singular.\n")
-        }
-        else {
-            idparam <- 1:(nb.b + nb.phi)
-            idestim <- idparam[-fixpar[[1]]]
-            Hr <- as.matrix(H[-fixpar[[1]], -fixpar[[1]]])
-            H.singular <- is.singular(Hr)
-            if (!H.singular) {
-                Vr <- solve(Hr)
-                dimnames(Vr) <- list(idestim, idestim)
-                varparam <- matrix(rep(NA, NROW(H) * NCOL(H)), 
-                  ncol = NCOL(H))
-                varparam[idestim, idestim] <- Vr
-            }
-        }
-    }
-    else varparam <- matrix(NA)
-    if (any(!is.na(varparam))) 
-        dimnames(varparam) <- list(nam, nam)
-    nbpar <- if (is.null(unlist(fixpar))) 
-        sum(!is.na(param))
-    else sum(!is.na(param[-fixpar[[1]]]))
-    logL.max <- sum(dbinom(x = y, size = n, prob = y/n, log = TRUE))
-    logL <- -res$value
-    dev <- -2 * (logL - logL.max)
-    df.residual <- sum(n > 0) - nbpar
-    iterations <- res$counts[1]
-    code <- res$convergence
-    msg <- if (!is.null(res$message)) 
-        res$message
-    else character(0)
-    if (code != 0) 
-        warning("\nPossible convergence problem. Optimization process code: ", 
-            code, " (see ?optim).\n")
-    new(Class = "glimML", CALL = CALL, link = link, method = "BB", 
-        data = data, formula = formula, random = random, param = param, 
-        varparam = varparam, fixed.param = param[seq(along = namb)], 
-        random.param = param[-seq(along = namb)], logL = logL, 
-        logL.max = logL.max, dev = dev, df.residual = df.residual, 
-        nbpar = nbpar, iterations = iterations, code = code, 
-        msg = msg, singular.hessian = as.numeric(H.singular), 
-        param.ini = param.ini, na.action = na.action)
-}
-
-invlink <- function (x, type = c("cloglog", "log", "logit", "probit")) 
-{
-    switch(type, logit = plogis(x), probit = pnorm(x), log = exp(x), cloglog = 1 - 
-        exp(-exp(x)))
-}
-
-link <- function (x, type = c("cloglog", "log", "logit", "probit")) 
-{
-    switch(type, logit = qlogis(x), probit = qnorm(x), 
-    log = log(x), cloglog = log(-log(1 - x)))
-}
-
-
-pr <- function (object, ...) 
-{
-    .local <- function (object, newdata = NULL, type = c("response", 
-        "link"), se.fit = FALSE, ...) 
-    {
-        type <- match.arg(type)
-        mf <- object@CALL
-        b <- coef(object)
-        f <- object@formula[-2]
-        data <- object@data
-        offset <- NULL
-        if (is.null(newdata)) {
-            mb <- match(c("formula", "data", "na.action"), names(mf), 
-                0)
-            mfb <- mf[c(1, mb)]
-            mfb$drop.unused.levels <- TRUE
-            mfb[[1]] <- as.name("model.frame")
-            names(mfb)[2] <- "formula"
-            mfb <- eval(mfb, parent.frame())
-            mt <- attr(mfb, "terms")
-            Y <- model.response(mfb, "numeric")
-            X <- if (!is.empty.model(mt)) 
-                model.matrix(mt, mfb, contrasts)
-            else matrix(, NROW(Y), 0)
-            offset <- model.offset(mfb)
-        }
-        else {
-            mfb <- model.frame(f, newdata)
-            offset <- model.offset(mfb)
-            X <- model.matrix(object = f, data = newdata)
-        }
-        eta <- as.vector(X %*% b)
-        eta <- if (is.null(offset)) 
-            eta
-        else eta + offset
-        varparam <- object@varparam
-        varb <- as.matrix(varparam[seq(length(b)), seq(length(b))])
-        vareta <- X %*% varb %*% t(X)
-        if (type == "response") {
-            p <- invlink(eta, type = object@link)
-            J <- switch(object@link, logit = diag(p * (1 - p), 
-                nrow = length(p)), probit = diag(dnorm( qnorm(p) ), 
-                nrow = length(p)), cloglog = diag(-(1 - p) * 
-                log(1 - p), nrow = length(p)), log = diag(p, 
-                nrow = length(p)))
-            varp <- J %*% vareta %*% J
-            se.p <- sqrt(diag(varp))
-        }
-        se.eta <- sqrt(diag(vareta))
-        if (!se.fit) 
-            res <- switch(type, response = p, link = eta)
-        else res <- switch(type, response = list(fit = p, se.fit = se.p), 
-            link = list(fit = eta, se.fit = se.eta))
-        res
-    }
-    .local(object, ...)
-}
-
-setMethod(predict, "glimML", pr)
-setMethod(fitted, "glimML", function (object, ...) {
-    mf <- object@CALL
-    mb <- match(c("formula", "data", "na.action"), names(mf), 
-        0)
-    mfb <- mf[c(1, mb)]
-    mfb$drop.unused.levels <- TRUE
-    mfb[[1]] <- as.name("model.frame")
-    names(mfb)[2] <- "formula"
-    mfb <- eval(mfb, parent.frame())
-    mt <- attr(mfb, "terms")
-    Y <- model.response(mfb, "numeric")
-    X <- if (!is.empty.model(mt)) 
-        model.matrix(mt, mfb, contrasts)
-    else matrix(, NROW(Y), 0)
-    offset <- model.offset(mfb)
-    b <- coef(object)
-    eta <- as.vector(X %*% b)
-    eta <- if (is.null(offset)) 
-        eta
-    else eta + offset
-    invlink(eta, type = object@link)
-}
-)