diff --git a/.ipynb_checkpoints/multi-area-model-checkpoint.ipynb b/.ipynb_checkpoints/multi-area-model-checkpoint.ipynb index 254f0da96b1160b7394c97e556e2dea26139b38e..7addec20de6a64199821d9029ccd96d136653126 100644 --- a/.ipynb_checkpoints/multi-area-model-checkpoint.ipynb +++ b/.ipynb_checkpoints/multi-area-model-checkpoint.ipynb @@ -58,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "06e7f341-c226-4782-a913-4868027d7d06", "metadata": {}, "outputs": [], @@ -76,12 +76,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "96517739", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -- N E S T --\n", + " Copyright (C) 2004 The NEST Initiative\n", + "\n", + " Version: 3.4\n", + " Built: May 17 2023 20:48:31\n", + "\n", + " This program is provided AS IS and comes with\n", + " NO WARRANTY. See the file LICENSE for details.\n", + "\n", + " Problems or suggestions?\n", + " Visit https://www.nest-simulator.org\n", + "\n", + " Type 'nest.help()' to find out more about NEST.\n", + "\n" + ] + } + ], "source": [ "# Import dependencies\n", "%matplotlib inline\n", @@ -99,22 +121,48 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "7e07b0d0", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: nested_dict in /srv/main-spack-instance-2302/spack/var/spack/environments/ebrains-23-02/.spack-env/._view/6axslmv6jvf4v2nte3uwlayg4vhsjoha/lib/python3.8/site-packages (1.61)\n", + "Requirement already satisfied: dicthash in /srv/main-spack-instance-2302/spack/var/spack/environments/ebrains-23-02/.spack-env/._view/6axslmv6jvf4v2nte3uwlayg4vhsjoha/lib/python3.8/site-packages (0.0.2)\n", + "Requirement already satisfied: future in /srv/main-spack-instance-2302/spack/var/spack/environments/ebrains-23-02/.spack-env/._view/6axslmv6jvf4v2nte3uwlayg4vhsjoha/lib/python3.8/site-packages (from dicthash) (0.18.2)\n" + ] + } + ], "source": [ "!pip install nested_dict dicthash" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "1d440c07-9b69-4e52-8573-26b13493bc5a", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "<style>\n", + "table {float:left}\n", + "</style>\n" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Jupyter notebook display format setting\n", "style = \"\"\"\n", @@ -192,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "60265d52", "metadata": {}, "outputs": [], @@ -221,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "6e4bed8d", "metadata": {}, "outputs": [], @@ -304,7 +352,6 @@ "cell_type": "markdown", "id": "1fd58841", "metadata": { - "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ @@ -313,10 +360,70 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "ab25f9f8", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing network from dictionary.\n", + "RAND_DATA_LABEL 4294\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/srv/main-spack-instance-2302/spack/opt/spack/linux-ubuntu20.04-x86_64/gcc-10.3.0/py-numpy-1.21.6-6fewtq7oarp3vtwlxrrcofz5sxwt55s7/lib/python3.8/site-packages/numpy/core/fromnumeric.py:3440: RuntimeWarning:Mean of empty slice.\n", + "/srv/main-spack-instance-2302/spack/opt/spack/linux-ubuntu20.04-x86_64/gcc-10.3.0/py-numpy-1.21.6-6fewtq7oarp3vtwlxrrcofz5sxwt55s7/lib/python3.8/site-packages/numpy/core/_methods.py:189: RuntimeWarning:invalid value encountered in double_scalars\n", + "Error in library(\"aod\") : there is no package called ‘aod’\n", + "Execution halted\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No R installation or IndexError, taking hard-coded SLN fit parameters.\n", + "\n", + "\n", + "========================================\n", + "Customized parameters\n", + "--------------------\n", + "{'K_scaling': 0.005,\n", + " 'N_scaling': 0.005,\n", + " 'connection_params': {'K_stable': 'K_stable.npy',\n", + " 'av_indegree_V1': 3950.0,\n", + " 'fac_nu_ext_5E': 1.125,\n", + " 'fac_nu_ext_6E': 1.41666667,\n", + " 'fac_nu_ext_TH': 1.2,\n", + " 'g': -11.0,\n", + " 'replace_non_simulated_areas': 'het_poisson_stat'},\n", + " 'fullscale_rates': 'tests/fullscale_rates.json',\n", + " 'input_params': {'rate_ext': 10.0},\n", + " 'neuron_params': {'V0_mean': -150.0, 'V0_sd': 50.0}}\n", + "========================================\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/srv/main-spack-instance-2302/spack/var/spack/environments/ebrains-23-02/.spack-env/view/lib/python3.8/site-packages/dicthash/dicthash.py:47: UserWarning:Float too small for safe conversion tointeger. Rounding down to zero.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation label: 27d81076e6d6e9e591684be053078477\n", + "Copied files.\n", + "Initialized simulation class.\n" + ] + } + ], "source": [ "M = MultiAreaModel(network_params, \n", " simulation=True,\n", @@ -335,10 +442,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "6a7ddf0e", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration: 0\n", + "Mean-field theory predicts an average firing rate of 29.588 spikes/s across all populations.\n" + ] + } + ], "source": [ "p, r = M.theory.integrate_siegert()\n", "print(\"Mean-field theory predicts an average \"\n", @@ -371,7 +487,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "6316ac24", "metadata": {}, "outputs": [], @@ -391,7 +507,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "id": "445a722a", "metadata": {}, "outputs": [], @@ -409,14 +525,6 @@ "Go back to [Notebook structure](#toc)" ] }, - { - "cell_type": "markdown", - "id": "04894f5e-35ec-4b22-8891-bd7ba86098e9", - "metadata": {}, - "source": [ - "<br>" - ] - }, { "cell_type": "markdown", "id": "0c1cad59-81d0-4e24-ac33-13c4ca8c6dec", @@ -427,10 +535,85 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "id": "15778e9c", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Prepared simulation in 0.00 seconds.\n", + "Rank 0: created area V1 with 0 local nodes\n", + "Memory after V1 : 1911.26 MB\n", + "Rank 0: created area V2 with 0 local nodes\n", + "Memory after V2 : 1937.84 MB\n", + "Rank 0: created area VP with 0 local nodes\n", + "Memory after VP : 1967.04 MB\n", + "Rank 0: created area V3 with 0 local nodes\n", + "Memory after V3 : 1995.29 MB\n", + "Rank 0: created area V3A with 0 local nodes\n", + "Memory after V3A : 2015.20 MB\n", + "Rank 0: created area MT with 0 local nodes\n", + "Memory after MT : 2040.86 MB\n", + "Rank 0: created area V4t with 0 local nodes\n", + "Memory after V4t : 2065.80 MB\n", + "Rank 0: created area V4 with 0 local nodes\n", + "Memory after V4 : 2092.75 MB\n", + "Rank 0: created area VOT with 0 local nodes\n", + "Memory after VOT : 2118.06 MB\n", + "Rank 0: created area MSTd with 0 local nodes\n", + "Memory after MSTd : 2139.53 MB\n", + "Rank 0: created area PIP with 0 local nodes\n", + "Memory after PIP : 2160.92 MB\n", + "Rank 0: created area PO with 0 local nodes\n", + "Memory after PO : 2182.43 MB\n", + "Rank 0: created area DP with 0 local nodes\n", + "Memory after DP : 2202.58 MB\n", + "Rank 0: created area MIP with 0 local nodes\n", + "Memory after MIP : 2224.23 MB\n", + "Rank 0: created area MDP with 0 local nodes\n", + "Memory after MDP : 2245.59 MB\n", + "Rank 0: created area VIP with 0 local nodes\n", + "Memory after VIP : 2267.52 MB\n", + "Rank 0: created area LIP with 0 local nodes\n", + "Memory after LIP : 2291.56 MB\n", + "Rank 0: created area PITv with 0 local nodes\n", + "Memory after PITv : 2316.88 MB\n", + "Rank 0: created area PITd with 0 local nodes\n", + "Memory after PITd : 2342.02 MB\n", + "Rank 0: created area MSTl with 0 local nodes\n", + "Memory after MSTl : 2363.48 MB\n", + "Rank 0: created area CITv with 0 local nodes\n", + "Memory after CITv : 2382.79 MB\n", + "Rank 0: created area CITd with 0 local nodes\n", + "Memory after CITd : 2402.08 MB\n", + "Rank 0: created area FEF with 0 local nodes\n", + "Memory after FEF : 2423.46 MB\n", + "Rank 0: created area TF with 0 local nodes\n", + "Memory after TF : 2439.15 MB\n", + "Rank 0: created area AITv with 0 local nodes\n", + "Memory after AITv : 2461.86 MB\n", + "Rank 0: created area FST with 0 local nodes\n", + "Memory after FST : 2478.59 MB\n", + "Rank 0: created area 7a with 0 local nodes\n", + "Memory after 7a : 2499.80 MB\n", + "Rank 0: created area STPp with 0 local nodes\n", + "Memory after STPp : 2518.41 MB\n", + "Rank 0: created area STPa with 0 local nodes\n", + "Memory after STPa : 2537.55 MB\n", + "Rank 0: created area 46 with 0 local nodes\n", + "Memory after 46 : 2553.03 MB\n", + "Rank 0: created area AITd with 0 local nodes\n", + "Memory after AITd : 2575.56 MB\n", + "Rank 0: created area TH with 0 local nodes\n", + "Memory after TH : 2588.26 MB\n", + "Created areas and internal connections in 2.22 seconds.\n", + "Created cortico-cortical connections in 22.70 seconds.\n", + "Simulated network in 70.32 seconds.\n" + ] + } + ], "source": [ "# run the simulation, depending on the model parameter and downscale ratio, the running time varies largely.\n", "M.simulation.simulate()" @@ -473,7 +656,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "dc3b1820", "metadata": {}, "outputs": [], @@ -507,7 +690,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "e7eb052e", "metadata": {}, "outputs": [], @@ -530,7 +713,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "id": "902f2800", "metadata": {}, "outputs": [], @@ -572,7 +755,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "id": "f5b58845-4d1a-430f-83f4-402fdf918aef", "metadata": { "tags": [] @@ -585,12 +768,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "id": "6607a73d-1c74-4848-9603-081ad0e7cae8", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loading spikes\n" + ] + } + ], "source": [ "\"\"\"\n", "Analysis class.\n", @@ -621,7 +812,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "id": "c471e9c8-b1e4-43e4-a6a1-443b8b8963be", "metadata": { "tags": [] @@ -636,12 +827,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "id": "1870cf34-ee62-4614-bc25-c36bc9a7377c", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Stored data have been computed with different parameters\n", + "Computing population rates\n" + ] + } + ], "source": [ "\"\"\"\n", "Calculate time-averaged population rates and store them in member pop_rates.\n", @@ -673,12 +873,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "id": "50b7df89", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Computing synchrony\n" + ] + } + ], "source": [ "\"\"\"\n", "Calculate synchrony as the coefficient of variation of the population rate\n", @@ -710,12 +918,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "id": "d43b493c", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Computing population LvR\n" + ] + } + ], "source": [ "\"\"\"\n", "Calculate poulation-averaged LvR (see Shinomoto et al. 2009) and\n", @@ -742,12 +958,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "id": "401ece2d-47c8-4775-80ae-92a8e432520c", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Computing rate time series\n" + ] + }, + { + "ename": "TypeError", + "evalue": "'float' object cannot be interpreted as an integer", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Input \u001b[0;32mIn [29]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;124;03mCalculate time series of population- and area-averaged firing rates.\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;124;03mUses ah.pop_rate_time_series.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[38;5;124;03m - 'rect_time_window' : width of the moving rectangular function\u001b[39;00m\n\u001b[1;32m 32\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m---> 33\u001b[0m \u001b[43mA\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_rate_time_series\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/MAM2EBRAINS/multiarea_model/analysis.py:446\u001b[0m, in \u001b[0;36mAnalysis.create_rate_time_series\u001b[0;34m(self, **keywords)\u001b[0m\n\u001b[1;32m 439\u001b[0m time_series \u001b[38;5;241m=\u001b[39m ah\u001b[38;5;241m.\u001b[39mpop_rate_time_series(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mspike_data[area][pop],\n\u001b[1;32m 440\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnetwork\u001b[38;5;241m.\u001b[39mN[area][pop],\n\u001b[1;32m 441\u001b[0m params[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt_min\u001b[39m\u001b[38;5;124m'\u001b[39m],\n\u001b[1;32m 442\u001b[0m params[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt_max\u001b[39m\u001b[38;5;124m'\u001b[39m],\n\u001b[1;32m 443\u001b[0m params[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mresolution\u001b[39m\u001b[38;5;124m'\u001b[39m],\n\u001b[1;32m 444\u001b[0m kernel\u001b[38;5;241m=\u001b[39mparams[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mkernel\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m 445\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 446\u001b[0m time_series \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mnan\u001b[38;5;241m*\u001b[39m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mones\u001b[49m\u001b[43m(\u001b[49m\u001b[43mparams\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt_max\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt_min\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 447\u001b[0m d_pops[area][pop] \u001b[38;5;241m=\u001b[39m time_series\n\u001b[1;32m 449\u001b[0m total_spikes \u001b[38;5;241m=\u001b[39m ah\u001b[38;5;241m.\u001b[39marea_spike_train(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mspike_data[area])\n", + "File \u001b[0;32m/srv/main-spack-instance-2302/spack/opt/spack/linux-ubuntu20.04-x86_64/gcc-10.3.0/py-numpy-1.21.6-6fewtq7oarp3vtwlxrrcofz5sxwt55s7/lib/python3.8/site-packages/numpy/core/numeric.py:204\u001b[0m, in \u001b[0;36mones\u001b[0;34m(shape, dtype, order, like)\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m like \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 202\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _ones_with_like(shape, dtype\u001b[38;5;241m=\u001b[39mdtype, order\u001b[38;5;241m=\u001b[39morder, like\u001b[38;5;241m=\u001b[39mlike)\n\u001b[0;32m--> 204\u001b[0m a \u001b[38;5;241m=\u001b[39m \u001b[43mempty\u001b[49m\u001b[43m(\u001b[49m\u001b[43mshape\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43morder\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 205\u001b[0m multiarray\u001b[38;5;241m.\u001b[39mcopyto(a, \u001b[38;5;241m1\u001b[39m, casting\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124munsafe\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 206\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m a\n", + "\u001b[0;31mTypeError\u001b[0m: 'float' object cannot be interpreted as an integer" + ] + } + ], "source": [ "\"\"\"\n", "Calculate time series of population- and area-averaged firing rates.\n", diff --git a/multi-area-model.ipynb b/multi-area-model.ipynb index f92008e4cec6dba4d5b28f4b1e7547808fbcb746..7addec20de6a64199821d9029ccd96d136653126 100644 --- a/multi-area-model.ipynb +++ b/multi-area-model.ipynb @@ -768,7 +768,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 24, "id": "6607a73d-1c74-4848-9603-081ad0e7cae8", "metadata": { "tags": [] @@ -812,7 +812,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 25, "id": "c471e9c8-b1e4-43e4-a6a1-443b8b8963be", "metadata": { "tags": [] @@ -827,7 +827,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 26, "id": "1870cf34-ee62-4614-bc25-c36bc9a7377c", "metadata": { "tags": [] @@ -873,7 +873,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 27, "id": "50b7df89", "metadata": { "tags": [] @@ -918,7 +918,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 28, "id": "d43b493c", "metadata": { "tags": [] @@ -958,7 +958,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 29, "id": "401ece2d-47c8-4775-80ae-92a8e432520c", "metadata": { "tags": [] @@ -978,7 +978,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "Input \u001b[0;32mIn [21]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;124;03mCalculate time series of population- and area-averaged firing rates.\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;124;03mUses ah.pop_rate_time_series.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[38;5;124;03m - 'rect_time_window' : width of the moving rectangular function\u001b[39;00m\n\u001b[1;32m 32\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m---> 33\u001b[0m \u001b[43mA\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_rate_time_series\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "Input \u001b[0;32mIn [29]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;124;03mCalculate time series of population- and area-averaged firing rates.\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;124;03mUses ah.pop_rate_time_series.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[38;5;124;03m - 'rect_time_window' : width of the moving rectangular function\u001b[39;00m\n\u001b[1;32m 32\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m---> 33\u001b[0m \u001b[43mA\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_rate_time_series\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/MAM2EBRAINS/multiarea_model/analysis.py:446\u001b[0m, in \u001b[0;36mAnalysis.create_rate_time_series\u001b[0;34m(self, **keywords)\u001b[0m\n\u001b[1;32m 439\u001b[0m time_series \u001b[38;5;241m=\u001b[39m ah\u001b[38;5;241m.\u001b[39mpop_rate_time_series(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mspike_data[area][pop],\n\u001b[1;32m 440\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnetwork\u001b[38;5;241m.\u001b[39mN[area][pop],\n\u001b[1;32m 441\u001b[0m params[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt_min\u001b[39m\u001b[38;5;124m'\u001b[39m],\n\u001b[1;32m 442\u001b[0m params[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt_max\u001b[39m\u001b[38;5;124m'\u001b[39m],\n\u001b[1;32m 443\u001b[0m params[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mresolution\u001b[39m\u001b[38;5;124m'\u001b[39m],\n\u001b[1;32m 444\u001b[0m kernel\u001b[38;5;241m=\u001b[39mparams[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mkernel\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m 445\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 446\u001b[0m time_series \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mnan\u001b[38;5;241m*\u001b[39m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mones\u001b[49m\u001b[43m(\u001b[49m\u001b[43mparams\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt_max\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt_min\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 447\u001b[0m d_pops[area][pop] \u001b[38;5;241m=\u001b[39m time_series\n\u001b[1;32m 449\u001b[0m total_spikes \u001b[38;5;241m=\u001b[39m ah\u001b[38;5;241m.\u001b[39marea_spike_train(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mspike_data[area])\n", "File \u001b[0;32m/srv/main-spack-instance-2302/spack/opt/spack/linux-ubuntu20.04-x86_64/gcc-10.3.0/py-numpy-1.21.6-6fewtq7oarp3vtwlxrrcofz5sxwt55s7/lib/python3.8/site-packages/numpy/core/numeric.py:204\u001b[0m, in \u001b[0;36mones\u001b[0;34m(shape, dtype, order, like)\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m like \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 202\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _ones_with_like(shape, dtype\u001b[38;5;241m=\u001b[39mdtype, order\u001b[38;5;241m=\u001b[39morder, like\u001b[38;5;241m=\u001b[39mlike)\n\u001b[0;32m--> 204\u001b[0m a \u001b[38;5;241m=\u001b[39m \u001b[43mempty\u001b[49m\u001b[43m(\u001b[49m\u001b[43mshape\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43morder\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 205\u001b[0m multiarray\u001b[38;5;241m.\u001b[39mcopyto(a, \u001b[38;5;241m1\u001b[39m, casting\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124munsafe\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 206\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m a\n", "\u001b[0;31mTypeError\u001b[0m: 'float' object cannot be interpreted as an integer"