diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint-checkpoint.R new file mode 100644 index 0000000000000000000000000000000000000000..410fdd1141c305967079963af1f5665275c3b0fd --- /dev/null +++ b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint-checkpoint.R @@ -0,0 +1,14 @@ +library('aod') +args <- commandArgs(trailingOnly=TRUE) +source(paste(args,'multiarea_model/data_multiarea/bbAlt.R', sep="")) +f <- file(paste(args,'multiarea_model/data_multiarea/raw_data/RData_prepared_logdensities.txt', sep=""),'r') +x <- read.table(f) +close(f) + + +dens <- data.matrix(x)[,7] + +m2.bb <- betabin(cbind(S, I) ~ dens , ~ 1, data = x, "probit", control = list(maxit = 100000)) +h2.bb <- c(coef(m2.bb)) + +print(h2.bb) diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint-checkpoint.R new file mode 100644 index 0000000000000000000000000000000000000000..6aa3d5eab91649f69cee522c44aa84468fecc7b9 --- /dev/null +++ b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint-checkpoint.R @@ -0,0 +1,289 @@ +# Script provided by Kenneth Knoblauch +# This code is based on functions from the aod package of R written by +# Matthieu Lesnoff and Renaud Lancelot +# (https://cran.r-project.org/web/packages/aod/index.html), published +# under the GPL-3 license +# (https://cran.r-project.org/web/licenses/GPL-3). + +betabin <- function (formula, random, data = NULL, link = c("logit", "probit", "cloglog"), + phi.ini = NULL, warnings = FALSE, na.action = na.omit, fixpar = list(), + hessian = TRUE, control = list(maxit = 2000), ...) +{ + CALL <- mf <- match.call(expand.dots = FALSE) + tr <- function(string) gsub("^[[:space:]]+|[[:space:]]+$", + "", string) + link <- match.arg(link) + if (length(formula) != 3) + stop(paste(tr(deparse(formula)), collapse = " "), "is not a valid formula.") + else if (substring(deparse(formula)[1], 1, 5) != "cbind") + stop(paste(tr(deparse(formula)), collapse = ""), " is not a valid formula.\n", + "The response must be a matrix of the form cbind(success, failure)") + if (length(random) == 3) { + form <- deparse(random) + warning("The formula for phi (", form, ") contains a response which is ignored.") + random <- random[-2] + } + explain <- as.character(attr(terms(random), "variables"))[-1] + if (length(explain) > 1) { + warning("The formula for phi contains several explanatory variables (", + paste(explain, collapse = ", "), ").\n", "Only the first one (", + explain[1], ") was considered.") + explain <- explain[1] + } + gf3 <- if (length(explain) == 1) + paste(as.character(formula[3]), explain, sep = " + ") + else as.character(formula[3]) + gf <- formula(paste(formula[2], "~", gf3)) + if (missing(data)) + data <- environment(gf) + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + modmatrix.b <- if (!is.empty.model(mt)) + model.matrix(mt, mfb) + else matrix(, NROW(Y), 0) + Y <- model.response(mfb, "numeric") + weights <- model.weights(mfb) + if (!is.null(weights) && any(weights < 0)) + stop("Negative wts not allowed") + n <- rowSums(Y) + y <- Y[, 1] + if (any(n == 0)) + warning("The data set contains at least one line with weight = 0.\n") + mr <- match(c("random", "data", "na.action"), names(mf), + 0) + mr <- mf[c(1, mr)] + mr$drop.unused.levels <- TRUE + mr[[1]] <- as.name("model.frame") + names(mr)[2] <- "formula" + mr <- eval(mr, parent.frame()) + if (length(explain) == 0) + modmatrix.phi <- model.matrix(object = ~1, data = mr) + else { + express <- paste("model.matrix(object = ~ -1 + ", explain, + ", data = mr", ", contrasts = list(", explain, " = 'contr.treatment'))", + sep = "") + if (is.ordered(data[, match(explain, table = names(mr))])) + warning(explain, " is an ordered factor.\n", "Treatment contrast was used to build model matrix for phi.") + modmatrix.phi <- eval(parse(text = express)) + } + fam <- eval(parse(text = paste("binomial(link =", link, ")"))) + fm <- glm(formula = formula, family = fam, data = data, na.action = na.action) + b <- coef(fm) + if (any(is.na(b))) { + print(nab <- b[is.na(b)]) + stop("Initial values for the fixed effects contain at least one missing value.") + } + nb.b <- ncol(modmatrix.b) + nb.phi <- ncol(modmatrix.phi) + if (!is.null(phi.ini) && !(phi.ini < 1 & phi.ini > 0)) + stop("phi.ini was set to ", phi.ini, ".\nphi.ini should verify 0 < phi.ini < 1") + else if (is.null(phi.ini)) + phi.ini <- rep(0.1, nb.phi) + param.ini <- c(b, phi.ini) + if (!is.null(unlist(fixpar))) + param.ini[fixpar[[1]]] <- fixpar[[2]] + minuslogL <- function(param) { + if (!is.null(unlist(fixpar))) + param[fixpar[[1]]] <- fixpar[[2]] + b <- param[1:nb.b] + eta <- as.vector(modmatrix.b %*% b) + p <- invlink(eta, type = link) + phi <- as.vector(modmatrix.phi %*% param[(nb.b + 1):(nb.b + + nb.phi)]) + cnd <- phi == 0 + f1 <- dbinom(x = y[cnd], size = n[cnd], prob = p[cnd], + log = TRUE) + n2 <- n[!cnd] + y2 <- y[!cnd] + p2 <- p[!cnd] + phi2 <- phi[!cnd] + f2 <- lchoose(n2, y2) + lbeta(p2 * (1 - phi2)/phi2 + + y2, (1 - p2) * (1 - phi2)/phi2 + n2 - y2) - lbeta(p2 * + (1 - phi2)/phi2, (1 - p2) * (1 - phi2)/phi2) + fn <- sum(c(f1, f2)) + if (!is.finite(fn)) + fn <- -1e+20 + -fn + } + withWarnings <- function(expr) { + myWarnings <- NULL + wHandler <- function(w) { + myWarnings <<- c(myWarnings, list(w)) + invokeRestart("muffleWarning") + } + val <- withCallingHandlers(expr, warning = wHandler) + list(value = val, warnings = myWarnings) + } + reswarn <- withWarnings(optim(par = param.ini, fn = minuslogL, + hessian = hessian, control = control, ...)) + res <- reswarn$value + if (warnings) { + if (length(reswarn$warnings) > 0) { + v <- unlist(lapply(reswarn$warnings, as.character)) + tv <- data.frame(message = v, freq = rep(1, length(v))) + cat("Warnings during likelihood maximisation:\n") + print(aggregate(tv[, "freq", drop = FALSE], list(warning = tv$message), + sum)) + } + } + param <- res$par + namb <- colnames(modmatrix.b) + namphi <- paste("phi", colnames(modmatrix.phi), sep = ".") + nam <- c(namb, namphi) + names(param) <- nam + if (!is.null(unlist(fixpar))) + param[fixpar[[1]]] <- fixpar[[2]] + H <- H.singular <- Hr.singular <- NA + varparam <- matrix(NA) + is.singular <- function(X) qr(X)$rank < nrow(as.matrix(X)) + if (hessian) { + H <- res$hessian + if (is.null(unlist(fixpar))) { + H.singular <- is.singular(H) + if (!H.singular) + varparam <- qr.solve(H) + else warning("The hessian matrix was singular.\n") + } + else { + idparam <- 1:(nb.b + nb.phi) + idestim <- idparam[-fixpar[[1]]] + Hr <- as.matrix(H[-fixpar[[1]], -fixpar[[1]]]) + H.singular <- is.singular(Hr) + if (!H.singular) { + Vr <- solve(Hr) + dimnames(Vr) <- list(idestim, idestim) + varparam <- matrix(rep(NA, NROW(H) * NCOL(H)), + ncol = NCOL(H)) + varparam[idestim, idestim] <- Vr + } + } + } + else varparam <- matrix(NA) + if (any(!is.na(varparam))) + dimnames(varparam) <- list(nam, nam) + nbpar <- if (is.null(unlist(fixpar))) + sum(!is.na(param)) + else sum(!is.na(param[-fixpar[[1]]])) + logL.max <- sum(dbinom(x = y, size = n, prob = y/n, log = TRUE)) + logL <- -res$value + dev <- -2 * (logL - logL.max) + df.residual <- sum(n > 0) - nbpar + iterations <- res$counts[1] + code <- res$convergence + msg <- if (!is.null(res$message)) + res$message + else character(0) + if (code != 0) + warning("\nPossible convergence problem. Optimization process code: ", + code, " (see ?optim).\n") + new(Class = "glimML", CALL = CALL, link = link, method = "BB", + data = data, formula = formula, random = random, param = param, + varparam = varparam, fixed.param = param[seq(along = namb)], + random.param = param[-seq(along = namb)], logL = logL, + logL.max = logL.max, dev = dev, df.residual = df.residual, + nbpar = nbpar, iterations = iterations, code = code, + msg = msg, singular.hessian = as.numeric(H.singular), + param.ini = param.ini, na.action = na.action) +} + +invlink <- function (x, type = c("cloglog", "log", "logit", "probit")) +{ + switch(type, logit = plogis(x), probit = pnorm(x), log = exp(x), cloglog = 1 - + exp(-exp(x))) +} + +link <- function (x, type = c("cloglog", "log", "logit", "probit")) +{ + switch(type, logit = qlogis(x), probit = qnorm(x), + log = log(x), cloglog = log(-log(1 - x))) +} + + +pr <- function (object, ...) +{ + .local <- function (object, newdata = NULL, type = c("response", + "link"), se.fit = FALSE, ...) + { + type <- match.arg(type) + mf <- object@CALL + b <- coef(object) + f <- object@formula[-2] + data <- object@data + offset <- NULL + if (is.null(newdata)) { + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + Y <- model.response(mfb, "numeric") + X <- if (!is.empty.model(mt)) + model.matrix(mt, mfb, contrasts) + else matrix(, NROW(Y), 0) + offset <- model.offset(mfb) + } + else { + mfb <- model.frame(f, newdata) + offset <- model.offset(mfb) + X <- model.matrix(object = f, data = newdata) + } + eta <- as.vector(X %*% b) + eta <- if (is.null(offset)) + eta + else eta + offset + varparam <- object@varparam + varb <- as.matrix(varparam[seq(length(b)), seq(length(b))]) + vareta <- X %*% varb %*% t(X) + if (type == "response") { + p <- invlink(eta, type = object@link) + J <- switch(object@link, logit = diag(p * (1 - p), + nrow = length(p)), probit = diag(dnorm( qnorm(p) ), + nrow = length(p)), cloglog = diag(-(1 - p) * + log(1 - p), nrow = length(p)), log = diag(p, + nrow = length(p))) + varp <- J %*% vareta %*% J + se.p <- sqrt(diag(varp)) + } + se.eta <- sqrt(diag(vareta)) + if (!se.fit) + res <- switch(type, response = p, link = eta) + else res <- switch(type, response = list(fit = p, se.fit = se.p), + link = list(fit = eta, se.fit = se.eta)) + res + } + .local(object, ...) +} + +setMethod(predict, "glimML", pr) +setMethod(fitted, "glimML", function (object, ...) { + mf <- object@CALL + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + Y <- model.response(mfb, "numeric") + X <- if (!is.empty.model(mt)) + model.matrix(mt, mfb, contrasts) + else matrix(, NROW(Y), 0) + offset <- model.offset(mfb) + b <- coef(object) + eta <- as.vector(X %*% b) + eta <- if (is.null(offset)) + eta + else eta + offset + invlink(eta, type = object@link) +} +) diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint.R new file mode 100644 index 0000000000000000000000000000000000000000..410fdd1141c305967079963af1f5665275c3b0fd --- /dev/null +++ b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint-checkpoint.R @@ -0,0 +1,14 @@ +library('aod') +args <- commandArgs(trailingOnly=TRUE) +source(paste(args,'multiarea_model/data_multiarea/bbAlt.R', sep="")) +f <- file(paste(args,'multiarea_model/data_multiarea/raw_data/RData_prepared_logdensities.txt', sep=""),'r') +x <- read.table(f) +close(f) + + +dens <- data.matrix(x)[,7] + +m2.bb <- betabin(cbind(S, I) ~ dens , ~ 1, data = x, "probit", control = list(maxit = 100000)) +h2.bb <- c(coef(m2.bb)) + +print(h2.bb) diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint.R new file mode 100644 index 0000000000000000000000000000000000000000..6aa3d5eab91649f69cee522c44aa84468fecc7b9 --- /dev/null +++ b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint-checkpoint.R @@ -0,0 +1,289 @@ +# Script provided by Kenneth Knoblauch +# This code is based on functions from the aod package of R written by +# Matthieu Lesnoff and Renaud Lancelot +# (https://cran.r-project.org/web/packages/aod/index.html), published +# under the GPL-3 license +# (https://cran.r-project.org/web/licenses/GPL-3). + +betabin <- function (formula, random, data = NULL, link = c("logit", "probit", "cloglog"), + phi.ini = NULL, warnings = FALSE, na.action = na.omit, fixpar = list(), + hessian = TRUE, control = list(maxit = 2000), ...) +{ + CALL <- mf <- match.call(expand.dots = FALSE) + tr <- function(string) gsub("^[[:space:]]+|[[:space:]]+$", + "", string) + link <- match.arg(link) + if (length(formula) != 3) + stop(paste(tr(deparse(formula)), collapse = " "), "is not a valid formula.") + else if (substring(deparse(formula)[1], 1, 5) != "cbind") + stop(paste(tr(deparse(formula)), collapse = ""), " is not a valid formula.\n", + "The response must be a matrix of the form cbind(success, failure)") + if (length(random) == 3) { + form <- deparse(random) + warning("The formula for phi (", form, ") contains a response which is ignored.") + random <- random[-2] + } + explain <- as.character(attr(terms(random), "variables"))[-1] + if (length(explain) > 1) { + warning("The formula for phi contains several explanatory variables (", + paste(explain, collapse = ", "), ").\n", "Only the first one (", + explain[1], ") was considered.") + explain <- explain[1] + } + gf3 <- if (length(explain) == 1) + paste(as.character(formula[3]), explain, sep = " + ") + else as.character(formula[3]) + gf <- formula(paste(formula[2], "~", gf3)) + if (missing(data)) + data <- environment(gf) + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + modmatrix.b <- if (!is.empty.model(mt)) + model.matrix(mt, mfb) + else matrix(, NROW(Y), 0) + Y <- model.response(mfb, "numeric") + weights <- model.weights(mfb) + if (!is.null(weights) && any(weights < 0)) + stop("Negative wts not allowed") + n <- rowSums(Y) + y <- Y[, 1] + if (any(n == 0)) + warning("The data set contains at least one line with weight = 0.\n") + mr <- match(c("random", "data", "na.action"), names(mf), + 0) + mr <- mf[c(1, mr)] + mr$drop.unused.levels <- TRUE + mr[[1]] <- as.name("model.frame") + names(mr)[2] <- "formula" + mr <- eval(mr, parent.frame()) + if (length(explain) == 0) + modmatrix.phi <- model.matrix(object = ~1, data = mr) + else { + express <- paste("model.matrix(object = ~ -1 + ", explain, + ", data = mr", ", contrasts = list(", explain, " = 'contr.treatment'))", + sep = "") + if (is.ordered(data[, match(explain, table = names(mr))])) + warning(explain, " is an ordered factor.\n", "Treatment contrast was used to build model matrix for phi.") + modmatrix.phi <- eval(parse(text = express)) + } + fam <- eval(parse(text = paste("binomial(link =", link, ")"))) + fm <- glm(formula = formula, family = fam, data = data, na.action = na.action) + b <- coef(fm) + if (any(is.na(b))) { + print(nab <- b[is.na(b)]) + stop("Initial values for the fixed effects contain at least one missing value.") + } + nb.b <- ncol(modmatrix.b) + nb.phi <- ncol(modmatrix.phi) + if (!is.null(phi.ini) && !(phi.ini < 1 & phi.ini > 0)) + stop("phi.ini was set to ", phi.ini, ".\nphi.ini should verify 0 < phi.ini < 1") + else if (is.null(phi.ini)) + phi.ini <- rep(0.1, nb.phi) + param.ini <- c(b, phi.ini) + if (!is.null(unlist(fixpar))) + param.ini[fixpar[[1]]] <- fixpar[[2]] + minuslogL <- function(param) { + if (!is.null(unlist(fixpar))) + param[fixpar[[1]]] <- fixpar[[2]] + b <- param[1:nb.b] + eta <- as.vector(modmatrix.b %*% b) + p <- invlink(eta, type = link) + phi <- as.vector(modmatrix.phi %*% param[(nb.b + 1):(nb.b + + nb.phi)]) + cnd <- phi == 0 + f1 <- dbinom(x = y[cnd], size = n[cnd], prob = p[cnd], + log = TRUE) + n2 <- n[!cnd] + y2 <- y[!cnd] + p2 <- p[!cnd] + phi2 <- phi[!cnd] + f2 <- lchoose(n2, y2) + lbeta(p2 * (1 - phi2)/phi2 + + y2, (1 - p2) * (1 - phi2)/phi2 + n2 - y2) - lbeta(p2 * + (1 - phi2)/phi2, (1 - p2) * (1 - phi2)/phi2) + fn <- sum(c(f1, f2)) + if (!is.finite(fn)) + fn <- -1e+20 + -fn + } + withWarnings <- function(expr) { + myWarnings <- NULL + wHandler <- function(w) { + myWarnings <<- c(myWarnings, list(w)) + invokeRestart("muffleWarning") + } + val <- withCallingHandlers(expr, warning = wHandler) + list(value = val, warnings = myWarnings) + } + reswarn <- withWarnings(optim(par = param.ini, fn = minuslogL, + hessian = hessian, control = control, ...)) + res <- reswarn$value + if (warnings) { + if (length(reswarn$warnings) > 0) { + v <- unlist(lapply(reswarn$warnings, as.character)) + tv <- data.frame(message = v, freq = rep(1, length(v))) + cat("Warnings during likelihood maximisation:\n") + print(aggregate(tv[, "freq", drop = FALSE], list(warning = tv$message), + sum)) + } + } + param <- res$par + namb <- colnames(modmatrix.b) + namphi <- paste("phi", colnames(modmatrix.phi), sep = ".") + nam <- c(namb, namphi) + names(param) <- nam + if (!is.null(unlist(fixpar))) + param[fixpar[[1]]] <- fixpar[[2]] + H <- H.singular <- Hr.singular <- NA + varparam <- matrix(NA) + is.singular <- function(X) qr(X)$rank < nrow(as.matrix(X)) + if (hessian) { + H <- res$hessian + if (is.null(unlist(fixpar))) { + H.singular <- is.singular(H) + if (!H.singular) + varparam <- qr.solve(H) + else warning("The hessian matrix was singular.\n") + } + else { + idparam <- 1:(nb.b + nb.phi) + idestim <- idparam[-fixpar[[1]]] + Hr <- as.matrix(H[-fixpar[[1]], -fixpar[[1]]]) + H.singular <- is.singular(Hr) + if (!H.singular) { + Vr <- solve(Hr) + dimnames(Vr) <- list(idestim, idestim) + varparam <- matrix(rep(NA, NROW(H) * NCOL(H)), + ncol = NCOL(H)) + varparam[idestim, idestim] <- Vr + } + } + } + else varparam <- matrix(NA) + if (any(!is.na(varparam))) + dimnames(varparam) <- list(nam, nam) + nbpar <- if (is.null(unlist(fixpar))) + sum(!is.na(param)) + else sum(!is.na(param[-fixpar[[1]]])) + logL.max <- sum(dbinom(x = y, size = n, prob = y/n, log = TRUE)) + logL <- -res$value + dev <- -2 * (logL - logL.max) + df.residual <- sum(n > 0) - nbpar + iterations <- res$counts[1] + code <- res$convergence + msg <- if (!is.null(res$message)) + res$message + else character(0) + if (code != 0) + warning("\nPossible convergence problem. Optimization process code: ", + code, " (see ?optim).\n") + new(Class = "glimML", CALL = CALL, link = link, method = "BB", + data = data, formula = formula, random = random, param = param, + varparam = varparam, fixed.param = param[seq(along = namb)], + random.param = param[-seq(along = namb)], logL = logL, + logL.max = logL.max, dev = dev, df.residual = df.residual, + nbpar = nbpar, iterations = iterations, code = code, + msg = msg, singular.hessian = as.numeric(H.singular), + param.ini = param.ini, na.action = na.action) +} + +invlink <- function (x, type = c("cloglog", "log", "logit", "probit")) +{ + switch(type, logit = plogis(x), probit = pnorm(x), log = exp(x), cloglog = 1 - + exp(-exp(x))) +} + +link <- function (x, type = c("cloglog", "log", "logit", "probit")) +{ + switch(type, logit = qlogis(x), probit = qnorm(x), + log = log(x), cloglog = log(-log(1 - x))) +} + + +pr <- function (object, ...) +{ + .local <- function (object, newdata = NULL, type = c("response", + "link"), se.fit = FALSE, ...) + { + type <- match.arg(type) + mf <- object@CALL + b <- coef(object) + f <- object@formula[-2] + data <- object@data + offset <- NULL + if (is.null(newdata)) { + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + Y <- model.response(mfb, "numeric") + X <- if (!is.empty.model(mt)) + model.matrix(mt, mfb, contrasts) + else matrix(, NROW(Y), 0) + offset <- model.offset(mfb) + } + else { + mfb <- model.frame(f, newdata) + offset <- model.offset(mfb) + X <- model.matrix(object = f, data = newdata) + } + eta <- as.vector(X %*% b) + eta <- if (is.null(offset)) + eta + else eta + offset + varparam <- object@varparam + varb <- as.matrix(varparam[seq(length(b)), seq(length(b))]) + vareta <- X %*% varb %*% t(X) + if (type == "response") { + p <- invlink(eta, type = object@link) + J <- switch(object@link, logit = diag(p * (1 - p), + nrow = length(p)), probit = diag(dnorm( qnorm(p) ), + nrow = length(p)), cloglog = diag(-(1 - p) * + log(1 - p), nrow = length(p)), log = diag(p, + nrow = length(p))) + varp <- J %*% vareta %*% J + se.p <- sqrt(diag(varp)) + } + se.eta <- sqrt(diag(vareta)) + if (!se.fit) + res <- switch(type, response = p, link = eta) + else res <- switch(type, response = list(fit = p, se.fit = se.p), + link = list(fit = eta, se.fit = se.eta)) + res + } + .local(object, ...) +} + +setMethod(predict, "glimML", pr) +setMethod(fitted, "glimML", function (object, ...) { + mf <- object@CALL + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + Y <- model.response(mfb, "numeric") + X <- if (!is.empty.model(mt)) + model.matrix(mt, mfb, contrasts) + else matrix(, NROW(Y), 0) + offset <- model.offset(mfb) + b <- coef(object) + eta <- as.vector(X %*% b) + eta <- if (is.null(offset)) + eta + else eta + offset + invlink(eta, type = object@link) +} +) diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint.R new file mode 100644 index 0000000000000000000000000000000000000000..410fdd1141c305967079963af1f5665275c3b0fd --- /dev/null +++ b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/SLN_logdensities-checkpoint-checkpoint.R @@ -0,0 +1,14 @@ +library('aod') +args <- commandArgs(trailingOnly=TRUE) +source(paste(args,'multiarea_model/data_multiarea/bbAlt.R', sep="")) +f <- file(paste(args,'multiarea_model/data_multiarea/raw_data/RData_prepared_logdensities.txt', sep=""),'r') +x <- read.table(f) +close(f) + + +dens <- data.matrix(x)[,7] + +m2.bb <- betabin(cbind(S, I) ~ dens , ~ 1, data = x, "probit", control = list(maxit = 100000)) +h2.bb <- c(coef(m2.bb)) + +print(h2.bb) diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint.R new file mode 100644 index 0000000000000000000000000000000000000000..6aa3d5eab91649f69cee522c44aa84468fecc7b9 --- /dev/null +++ b/multiarea_model/data_multiarea/.ipynb_checkpoints/.ipynb_checkpoints/bbAlt-checkpoint-checkpoint.R @@ -0,0 +1,289 @@ +# Script provided by Kenneth Knoblauch +# This code is based on functions from the aod package of R written by +# Matthieu Lesnoff and Renaud Lancelot +# (https://cran.r-project.org/web/packages/aod/index.html), published +# under the GPL-3 license +# (https://cran.r-project.org/web/licenses/GPL-3). + +betabin <- function (formula, random, data = NULL, link = c("logit", "probit", "cloglog"), + phi.ini = NULL, warnings = FALSE, na.action = na.omit, fixpar = list(), + hessian = TRUE, control = list(maxit = 2000), ...) +{ + CALL <- mf <- match.call(expand.dots = FALSE) + tr <- function(string) gsub("^[[:space:]]+|[[:space:]]+$", + "", string) + link <- match.arg(link) + if (length(formula) != 3) + stop(paste(tr(deparse(formula)), collapse = " "), "is not a valid formula.") + else if (substring(deparse(formula)[1], 1, 5) != "cbind") + stop(paste(tr(deparse(formula)), collapse = ""), " is not a valid formula.\n", + "The response must be a matrix of the form cbind(success, failure)") + if (length(random) == 3) { + form <- deparse(random) + warning("The formula for phi (", form, ") contains a response which is ignored.") + random <- random[-2] + } + explain <- as.character(attr(terms(random), "variables"))[-1] + if (length(explain) > 1) { + warning("The formula for phi contains several explanatory variables (", + paste(explain, collapse = ", "), ").\n", "Only the first one (", + explain[1], ") was considered.") + explain <- explain[1] + } + gf3 <- if (length(explain) == 1) + paste(as.character(formula[3]), explain, sep = " + ") + else as.character(formula[3]) + gf <- formula(paste(formula[2], "~", gf3)) + if (missing(data)) + data <- environment(gf) + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + modmatrix.b <- if (!is.empty.model(mt)) + model.matrix(mt, mfb) + else matrix(, NROW(Y), 0) + Y <- model.response(mfb, "numeric") + weights <- model.weights(mfb) + if (!is.null(weights) && any(weights < 0)) + stop("Negative wts not allowed") + n <- rowSums(Y) + y <- Y[, 1] + if (any(n == 0)) + warning("The data set contains at least one line with weight = 0.\n") + mr <- match(c("random", "data", "na.action"), names(mf), + 0) + mr <- mf[c(1, mr)] + mr$drop.unused.levels <- TRUE + mr[[1]] <- as.name("model.frame") + names(mr)[2] <- "formula" + mr <- eval(mr, parent.frame()) + if (length(explain) == 0) + modmatrix.phi <- model.matrix(object = ~1, data = mr) + else { + express <- paste("model.matrix(object = ~ -1 + ", explain, + ", data = mr", ", contrasts = list(", explain, " = 'contr.treatment'))", + sep = "") + if (is.ordered(data[, match(explain, table = names(mr))])) + warning(explain, " is an ordered factor.\n", "Treatment contrast was used to build model matrix for phi.") + modmatrix.phi <- eval(parse(text = express)) + } + fam <- eval(parse(text = paste("binomial(link =", link, ")"))) + fm <- glm(formula = formula, family = fam, data = data, na.action = na.action) + b <- coef(fm) + if (any(is.na(b))) { + print(nab <- b[is.na(b)]) + stop("Initial values for the fixed effects contain at least one missing value.") + } + nb.b <- ncol(modmatrix.b) + nb.phi <- ncol(modmatrix.phi) + if (!is.null(phi.ini) && !(phi.ini < 1 & phi.ini > 0)) + stop("phi.ini was set to ", phi.ini, ".\nphi.ini should verify 0 < phi.ini < 1") + else if (is.null(phi.ini)) + phi.ini <- rep(0.1, nb.phi) + param.ini <- c(b, phi.ini) + if (!is.null(unlist(fixpar))) + param.ini[fixpar[[1]]] <- fixpar[[2]] + minuslogL <- function(param) { + if (!is.null(unlist(fixpar))) + param[fixpar[[1]]] <- fixpar[[2]] + b <- param[1:nb.b] + eta <- as.vector(modmatrix.b %*% b) + p <- invlink(eta, type = link) + phi <- as.vector(modmatrix.phi %*% param[(nb.b + 1):(nb.b + + nb.phi)]) + cnd <- phi == 0 + f1 <- dbinom(x = y[cnd], size = n[cnd], prob = p[cnd], + log = TRUE) + n2 <- n[!cnd] + y2 <- y[!cnd] + p2 <- p[!cnd] + phi2 <- phi[!cnd] + f2 <- lchoose(n2, y2) + lbeta(p2 * (1 - phi2)/phi2 + + y2, (1 - p2) * (1 - phi2)/phi2 + n2 - y2) - lbeta(p2 * + (1 - phi2)/phi2, (1 - p2) * (1 - phi2)/phi2) + fn <- sum(c(f1, f2)) + if (!is.finite(fn)) + fn <- -1e+20 + -fn + } + withWarnings <- function(expr) { + myWarnings <- NULL + wHandler <- function(w) { + myWarnings <<- c(myWarnings, list(w)) + invokeRestart("muffleWarning") + } + val <- withCallingHandlers(expr, warning = wHandler) + list(value = val, warnings = myWarnings) + } + reswarn <- withWarnings(optim(par = param.ini, fn = minuslogL, + hessian = hessian, control = control, ...)) + res <- reswarn$value + if (warnings) { + if (length(reswarn$warnings) > 0) { + v <- unlist(lapply(reswarn$warnings, as.character)) + tv <- data.frame(message = v, freq = rep(1, length(v))) + cat("Warnings during likelihood maximisation:\n") + print(aggregate(tv[, "freq", drop = FALSE], list(warning = tv$message), + sum)) + } + } + param <- res$par + namb <- colnames(modmatrix.b) + namphi <- paste("phi", colnames(modmatrix.phi), sep = ".") + nam <- c(namb, namphi) + names(param) <- nam + if (!is.null(unlist(fixpar))) + param[fixpar[[1]]] <- fixpar[[2]] + H <- H.singular <- Hr.singular <- NA + varparam <- matrix(NA) + is.singular <- function(X) qr(X)$rank < nrow(as.matrix(X)) + if (hessian) { + H <- res$hessian + if (is.null(unlist(fixpar))) { + H.singular <- is.singular(H) + if (!H.singular) + varparam <- qr.solve(H) + else warning("The hessian matrix was singular.\n") + } + else { + idparam <- 1:(nb.b + nb.phi) + idestim <- idparam[-fixpar[[1]]] + Hr <- as.matrix(H[-fixpar[[1]], -fixpar[[1]]]) + H.singular <- is.singular(Hr) + if (!H.singular) { + Vr <- solve(Hr) + dimnames(Vr) <- list(idestim, idestim) + varparam <- matrix(rep(NA, NROW(H) * NCOL(H)), + ncol = NCOL(H)) + varparam[idestim, idestim] <- Vr + } + } + } + else varparam <- matrix(NA) + if (any(!is.na(varparam))) + dimnames(varparam) <- list(nam, nam) + nbpar <- if (is.null(unlist(fixpar))) + sum(!is.na(param)) + else sum(!is.na(param[-fixpar[[1]]])) + logL.max <- sum(dbinom(x = y, size = n, prob = y/n, log = TRUE)) + logL <- -res$value + dev <- -2 * (logL - logL.max) + df.residual <- sum(n > 0) - nbpar + iterations <- res$counts[1] + code <- res$convergence + msg <- if (!is.null(res$message)) + res$message + else character(0) + if (code != 0) + warning("\nPossible convergence problem. Optimization process code: ", + code, " (see ?optim).\n") + new(Class = "glimML", CALL = CALL, link = link, method = "BB", + data = data, formula = formula, random = random, param = param, + varparam = varparam, fixed.param = param[seq(along = namb)], + random.param = param[-seq(along = namb)], logL = logL, + logL.max = logL.max, dev = dev, df.residual = df.residual, + nbpar = nbpar, iterations = iterations, code = code, + msg = msg, singular.hessian = as.numeric(H.singular), + param.ini = param.ini, na.action = na.action) +} + +invlink <- function (x, type = c("cloglog", "log", "logit", "probit")) +{ + switch(type, logit = plogis(x), probit = pnorm(x), log = exp(x), cloglog = 1 - + exp(-exp(x))) +} + +link <- function (x, type = c("cloglog", "log", "logit", "probit")) +{ + switch(type, logit = qlogis(x), probit = qnorm(x), + log = log(x), cloglog = log(-log(1 - x))) +} + + +pr <- function (object, ...) +{ + .local <- function (object, newdata = NULL, type = c("response", + "link"), se.fit = FALSE, ...) + { + type <- match.arg(type) + mf <- object@CALL + b <- coef(object) + f <- object@formula[-2] + data <- object@data + offset <- NULL + if (is.null(newdata)) { + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + Y <- model.response(mfb, "numeric") + X <- if (!is.empty.model(mt)) + model.matrix(mt, mfb, contrasts) + else matrix(, NROW(Y), 0) + offset <- model.offset(mfb) + } + else { + mfb <- model.frame(f, newdata) + offset <- model.offset(mfb) + X <- model.matrix(object = f, data = newdata) + } + eta <- as.vector(X %*% b) + eta <- if (is.null(offset)) + eta + else eta + offset + varparam <- object@varparam + varb <- as.matrix(varparam[seq(length(b)), seq(length(b))]) + vareta <- X %*% varb %*% t(X) + if (type == "response") { + p <- invlink(eta, type = object@link) + J <- switch(object@link, logit = diag(p * (1 - p), + nrow = length(p)), probit = diag(dnorm( qnorm(p) ), + nrow = length(p)), cloglog = diag(-(1 - p) * + log(1 - p), nrow = length(p)), log = diag(p, + nrow = length(p))) + varp <- J %*% vareta %*% J + se.p <- sqrt(diag(varp)) + } + se.eta <- sqrt(diag(vareta)) + if (!se.fit) + res <- switch(type, response = p, link = eta) + else res <- switch(type, response = list(fit = p, se.fit = se.p), + link = list(fit = eta, se.fit = se.eta)) + res + } + .local(object, ...) +} + +setMethod(predict, "glimML", pr) +setMethod(fitted, "glimML", function (object, ...) { + mf <- object@CALL + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + Y <- model.response(mfb, "numeric") + X <- if (!is.empty.model(mt)) + model.matrix(mt, mfb, contrasts) + else matrix(, NROW(Y), 0) + offset <- model.offset(mfb) + b <- coef(object) + eta <- as.vector(X %*% b) + eta <- if (is.null(offset)) + eta + else eta + offset + invlink(eta, type = object@link) +} +) diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/SLN_logdensities-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/SLN_logdensities-checkpoint.R new file mode 100644 index 0000000000000000000000000000000000000000..410fdd1141c305967079963af1f5665275c3b0fd --- /dev/null +++ b/multiarea_model/data_multiarea/.ipynb_checkpoints/SLN_logdensities-checkpoint.R @@ -0,0 +1,14 @@ +library('aod') +args <- commandArgs(trailingOnly=TRUE) +source(paste(args,'multiarea_model/data_multiarea/bbAlt.R', sep="")) +f <- file(paste(args,'multiarea_model/data_multiarea/raw_data/RData_prepared_logdensities.txt', sep=""),'r') +x <- read.table(f) +close(f) + + +dens <- data.matrix(x)[,7] + +m2.bb <- betabin(cbind(S, I) ~ dens , ~ 1, data = x, "probit", control = list(maxit = 100000)) +h2.bb <- c(coef(m2.bb)) + +print(h2.bb) diff --git a/multiarea_model/data_multiarea/.ipynb_checkpoints/bbAlt-checkpoint.R b/multiarea_model/data_multiarea/.ipynb_checkpoints/bbAlt-checkpoint.R new file mode 100644 index 0000000000000000000000000000000000000000..6aa3d5eab91649f69cee522c44aa84468fecc7b9 --- /dev/null +++ b/multiarea_model/data_multiarea/.ipynb_checkpoints/bbAlt-checkpoint.R @@ -0,0 +1,289 @@ +# Script provided by Kenneth Knoblauch +# This code is based on functions from the aod package of R written by +# Matthieu Lesnoff and Renaud Lancelot +# (https://cran.r-project.org/web/packages/aod/index.html), published +# under the GPL-3 license +# (https://cran.r-project.org/web/licenses/GPL-3). + +betabin <- function (formula, random, data = NULL, link = c("logit", "probit", "cloglog"), + phi.ini = NULL, warnings = FALSE, na.action = na.omit, fixpar = list(), + hessian = TRUE, control = list(maxit = 2000), ...) +{ + CALL <- mf <- match.call(expand.dots = FALSE) + tr <- function(string) gsub("^[[:space:]]+|[[:space:]]+$", + "", string) + link <- match.arg(link) + if (length(formula) != 3) + stop(paste(tr(deparse(formula)), collapse = " "), "is not a valid formula.") + else if (substring(deparse(formula)[1], 1, 5) != "cbind") + stop(paste(tr(deparse(formula)), collapse = ""), " is not a valid formula.\n", + "The response must be a matrix of the form cbind(success, failure)") + if (length(random) == 3) { + form <- deparse(random) + warning("The formula for phi (", form, ") contains a response which is ignored.") + random <- random[-2] + } + explain <- as.character(attr(terms(random), "variables"))[-1] + if (length(explain) > 1) { + warning("The formula for phi contains several explanatory variables (", + paste(explain, collapse = ", "), ").\n", "Only the first one (", + explain[1], ") was considered.") + explain <- explain[1] + } + gf3 <- if (length(explain) == 1) + paste(as.character(formula[3]), explain, sep = " + ") + else as.character(formula[3]) + gf <- formula(paste(formula[2], "~", gf3)) + if (missing(data)) + data <- environment(gf) + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + modmatrix.b <- if (!is.empty.model(mt)) + model.matrix(mt, mfb) + else matrix(, NROW(Y), 0) + Y <- model.response(mfb, "numeric") + weights <- model.weights(mfb) + if (!is.null(weights) && any(weights < 0)) + stop("Negative wts not allowed") + n <- rowSums(Y) + y <- Y[, 1] + if (any(n == 0)) + warning("The data set contains at least one line with weight = 0.\n") + mr <- match(c("random", "data", "na.action"), names(mf), + 0) + mr <- mf[c(1, mr)] + mr$drop.unused.levels <- TRUE + mr[[1]] <- as.name("model.frame") + names(mr)[2] <- "formula" + mr <- eval(mr, parent.frame()) + if (length(explain) == 0) + modmatrix.phi <- model.matrix(object = ~1, data = mr) + else { + express <- paste("model.matrix(object = ~ -1 + ", explain, + ", data = mr", ", contrasts = list(", explain, " = 'contr.treatment'))", + sep = "") + if (is.ordered(data[, match(explain, table = names(mr))])) + warning(explain, " is an ordered factor.\n", "Treatment contrast was used to build model matrix for phi.") + modmatrix.phi <- eval(parse(text = express)) + } + fam <- eval(parse(text = paste("binomial(link =", link, ")"))) + fm <- glm(formula = formula, family = fam, data = data, na.action = na.action) + b <- coef(fm) + if (any(is.na(b))) { + print(nab <- b[is.na(b)]) + stop("Initial values for the fixed effects contain at least one missing value.") + } + nb.b <- ncol(modmatrix.b) + nb.phi <- ncol(modmatrix.phi) + if (!is.null(phi.ini) && !(phi.ini < 1 & phi.ini > 0)) + stop("phi.ini was set to ", phi.ini, ".\nphi.ini should verify 0 < phi.ini < 1") + else if (is.null(phi.ini)) + phi.ini <- rep(0.1, nb.phi) + param.ini <- c(b, phi.ini) + if (!is.null(unlist(fixpar))) + param.ini[fixpar[[1]]] <- fixpar[[2]] + minuslogL <- function(param) { + if (!is.null(unlist(fixpar))) + param[fixpar[[1]]] <- fixpar[[2]] + b <- param[1:nb.b] + eta <- as.vector(modmatrix.b %*% b) + p <- invlink(eta, type = link) + phi <- as.vector(modmatrix.phi %*% param[(nb.b + 1):(nb.b + + nb.phi)]) + cnd <- phi == 0 + f1 <- dbinom(x = y[cnd], size = n[cnd], prob = p[cnd], + log = TRUE) + n2 <- n[!cnd] + y2 <- y[!cnd] + p2 <- p[!cnd] + phi2 <- phi[!cnd] + f2 <- lchoose(n2, y2) + lbeta(p2 * (1 - phi2)/phi2 + + y2, (1 - p2) * (1 - phi2)/phi2 + n2 - y2) - lbeta(p2 * + (1 - phi2)/phi2, (1 - p2) * (1 - phi2)/phi2) + fn <- sum(c(f1, f2)) + if (!is.finite(fn)) + fn <- -1e+20 + -fn + } + withWarnings <- function(expr) { + myWarnings <- NULL + wHandler <- function(w) { + myWarnings <<- c(myWarnings, list(w)) + invokeRestart("muffleWarning") + } + val <- withCallingHandlers(expr, warning = wHandler) + list(value = val, warnings = myWarnings) + } + reswarn <- withWarnings(optim(par = param.ini, fn = minuslogL, + hessian = hessian, control = control, ...)) + res <- reswarn$value + if (warnings) { + if (length(reswarn$warnings) > 0) { + v <- unlist(lapply(reswarn$warnings, as.character)) + tv <- data.frame(message = v, freq = rep(1, length(v))) + cat("Warnings during likelihood maximisation:\n") + print(aggregate(tv[, "freq", drop = FALSE], list(warning = tv$message), + sum)) + } + } + param <- res$par + namb <- colnames(modmatrix.b) + namphi <- paste("phi", colnames(modmatrix.phi), sep = ".") + nam <- c(namb, namphi) + names(param) <- nam + if (!is.null(unlist(fixpar))) + param[fixpar[[1]]] <- fixpar[[2]] + H <- H.singular <- Hr.singular <- NA + varparam <- matrix(NA) + is.singular <- function(X) qr(X)$rank < nrow(as.matrix(X)) + if (hessian) { + H <- res$hessian + if (is.null(unlist(fixpar))) { + H.singular <- is.singular(H) + if (!H.singular) + varparam <- qr.solve(H) + else warning("The hessian matrix was singular.\n") + } + else { + idparam <- 1:(nb.b + nb.phi) + idestim <- idparam[-fixpar[[1]]] + Hr <- as.matrix(H[-fixpar[[1]], -fixpar[[1]]]) + H.singular <- is.singular(Hr) + if (!H.singular) { + Vr <- solve(Hr) + dimnames(Vr) <- list(idestim, idestim) + varparam <- matrix(rep(NA, NROW(H) * NCOL(H)), + ncol = NCOL(H)) + varparam[idestim, idestim] <- Vr + } + } + } + else varparam <- matrix(NA) + if (any(!is.na(varparam))) + dimnames(varparam) <- list(nam, nam) + nbpar <- if (is.null(unlist(fixpar))) + sum(!is.na(param)) + else sum(!is.na(param[-fixpar[[1]]])) + logL.max <- sum(dbinom(x = y, size = n, prob = y/n, log = TRUE)) + logL <- -res$value + dev <- -2 * (logL - logL.max) + df.residual <- sum(n > 0) - nbpar + iterations <- res$counts[1] + code <- res$convergence + msg <- if (!is.null(res$message)) + res$message + else character(0) + if (code != 0) + warning("\nPossible convergence problem. Optimization process code: ", + code, " (see ?optim).\n") + new(Class = "glimML", CALL = CALL, link = link, method = "BB", + data = data, formula = formula, random = random, param = param, + varparam = varparam, fixed.param = param[seq(along = namb)], + random.param = param[-seq(along = namb)], logL = logL, + logL.max = logL.max, dev = dev, df.residual = df.residual, + nbpar = nbpar, iterations = iterations, code = code, + msg = msg, singular.hessian = as.numeric(H.singular), + param.ini = param.ini, na.action = na.action) +} + +invlink <- function (x, type = c("cloglog", "log", "logit", "probit")) +{ + switch(type, logit = plogis(x), probit = pnorm(x), log = exp(x), cloglog = 1 - + exp(-exp(x))) +} + +link <- function (x, type = c("cloglog", "log", "logit", "probit")) +{ + switch(type, logit = qlogis(x), probit = qnorm(x), + log = log(x), cloglog = log(-log(1 - x))) +} + + +pr <- function (object, ...) +{ + .local <- function (object, newdata = NULL, type = c("response", + "link"), se.fit = FALSE, ...) + { + type <- match.arg(type) + mf <- object@CALL + b <- coef(object) + f <- object@formula[-2] + data <- object@data + offset <- NULL + if (is.null(newdata)) { + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + Y <- model.response(mfb, "numeric") + X <- if (!is.empty.model(mt)) + model.matrix(mt, mfb, contrasts) + else matrix(, NROW(Y), 0) + offset <- model.offset(mfb) + } + else { + mfb <- model.frame(f, newdata) + offset <- model.offset(mfb) + X <- model.matrix(object = f, data = newdata) + } + eta <- as.vector(X %*% b) + eta <- if (is.null(offset)) + eta + else eta + offset + varparam <- object@varparam + varb <- as.matrix(varparam[seq(length(b)), seq(length(b))]) + vareta <- X %*% varb %*% t(X) + if (type == "response") { + p <- invlink(eta, type = object@link) + J <- switch(object@link, logit = diag(p * (1 - p), + nrow = length(p)), probit = diag(dnorm( qnorm(p) ), + nrow = length(p)), cloglog = diag(-(1 - p) * + log(1 - p), nrow = length(p)), log = diag(p, + nrow = length(p))) + varp <- J %*% vareta %*% J + se.p <- sqrt(diag(varp)) + } + se.eta <- sqrt(diag(vareta)) + if (!se.fit) + res <- switch(type, response = p, link = eta) + else res <- switch(type, response = list(fit = p, se.fit = se.p), + link = list(fit = eta, se.fit = se.eta)) + res + } + .local(object, ...) +} + +setMethod(predict, "glimML", pr) +setMethod(fitted, "glimML", function (object, ...) { + mf <- object@CALL + mb <- match(c("formula", "data", "na.action"), names(mf), + 0) + mfb <- mf[c(1, mb)] + mfb$drop.unused.levels <- TRUE + mfb[[1]] <- as.name("model.frame") + names(mfb)[2] <- "formula" + mfb <- eval(mfb, parent.frame()) + mt <- attr(mfb, "terms") + Y <- model.response(mfb, "numeric") + X <- if (!is.empty.model(mt)) + model.matrix(mt, mfb, contrasts) + else matrix(, NROW(Y), 0) + offset <- model.offset(mfb) + b <- coef(object) + eta <- as.vector(X %*% b) + eta <- if (is.null(offset)) + eta + else eta + offset + invlink(eta, type = object@link) +} +)