diff --git a/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_interareal_connectivity-checkpoint.py b/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_interareal_connectivity-checkpoint.py
index fce46e7026065d37e94d0b35b9a057ab545e1b04..1e10dbd6c410442e0d5c9f7eb2e823c7a9648cd0 100644
--- a/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_interareal_connectivity-checkpoint.py
+++ b/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_interareal_connectivity-checkpoint.py
@@ -26,7 +26,7 @@ def visualize_interareal_connectivity(M):
     """
     # nrows = 2
     nrows = 1
-    ncols = 3
+    ncols = 2
     # width = 6.8556
     width = 15
     panel_wh_ratio = 0.7 * (1. + np.sqrt(5)) / 2.  # golden ratio
@@ -40,23 +40,25 @@ def visualize_interareal_connectivity(M):
     axes = {}
 
     # gs1 = gridspec.GridSpec(2, 2)
-    gs1 = gridspec.GridSpec(1, 3)
+    gs1 = gridspec.GridSpec(1, 2)
     # gs1.update(left=0.06, right=0.95, top=0.95, bottom=0.1, wspace=0.1, hspace=0.3)
     gs1.update(left=0.06, right=0.95, top=0.95, bottom=0.1, wspace=0.3, hspace=0.3)
     
-    axes['A'] = pl.subplot(gs1[:1, :1])
-    axes['B'] = pl.subplot(gs1[:1, 1:2])
-    axes['D'] = pl.subplot(gs1[:1, 2:])
+    # axes['A'] = pl.subplot(gs1[:1, :1])
+    # axes['B'] = pl.subplot(gs1[:1, 1:2])
+    axes['B'] = pl.subplot(gs1[:1, :1])
+    # axes['D'] = pl.subplot(gs1[:1, 2:])
+    axes['D'] = pl.subplot(gs1[:1, 1:2])
 
-    pos = axes['A'].get_position()
+    # pos = axes['A'].get_position()
     pos2 = axes['D'].get_position()
     # axes['C'] = pl.axes([pos.x0 + 0.01, pos2.y0, pos.x1 - pos.x0 - 0.025, 0.23])
 
     # print(pos.x1 - pos.x0 - 0.025)
 
     # labels = ['A', 'B', 'C', 'D']
-    labels = ['A','B', 'D']
-    labels_display = ['Binary connectivity from CoCoMac', 'Full-scale model', 'Down-scale model']
+    labels = ['B', 'D']
+    labels_display = ['Full-scale model', 'Down-scale model']
     # for label in labels:
     for i in range(len(labels)):
         label = labels[i]
@@ -74,71 +76,71 @@ def visualize_interareal_connectivity(M):
                            'horizontalalignment': 'left', 'verticalalignment': 
                            'bottom'}, transform=axes[label].transAxes)
 
-    """
-    Load data
-    """
-    # M = MultiAreaModel({})
-    M_full_scale = MultiAreaModel({})
+#     """
+#     Load data
+#     """
+#     # M = MultiAreaModel({})
+#     M_full_scale = MultiAreaModel({})
     
-    datapath = './multiarea_model/data_multiarea/'
-    with open(os.path.join(datapath, 'viscortex_processed_data.json'), 'r') as f:
-        proc = json.load(f)
-    with open(os.path.join(datapath, 'viscortex_raw_data.json'), 'r') as f:
-        raw = json.load(f)
-
-    FLN_Data_FV91 = proc['FLN_Data_FV91']
+#     datapath = './multiarea_model/data_multiarea/'
+#     with open(os.path.join(datapath, 'viscortex_processed_data.json'), 'r') as f:
+#         proc = json.load(f)
+#     with open(os.path.join(datapath, 'viscortex_raw_data.json'), 'r') as f:
+#         raw = json.load(f)
+
+#     FLN_Data_FV91 = proc['FLN_Data_FV91']
+
+#     cocomac_data = raw['cocomac_data']
+#     median_distance_data = raw['median_distance_data']
+
+#     cocomac = np.zeros((32, 32))
+#     conn_matrix = np.zeros((32, 32))
+#     for i, area1 in enumerate(area_list[::-1]):
+#         for j, area2 in enumerate(area_list):
+#             # if M.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]:
+#             if M_full_scale.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]:
+#                 cocomac[i][j] = 1.
+#             if area2 in FLN_Data_FV91[area1]:
+#                 conn_matrix[i][j] = FLN_Data_FV91[area1][area2]
 
-    cocomac_data = raw['cocomac_data']
-    median_distance_data = raw['median_distance_data']
-
-    cocomac = np.zeros((32, 32))
-    conn_matrix = np.zeros((32, 32))
-    for i, area1 in enumerate(area_list[::-1]):
-        for j, area2 in enumerate(area_list):
-            # if M.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]:
-            if M_full_scale.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]:
-                cocomac[i][j] = 1.
-            if area2 in FLN_Data_FV91[area1]:
-                conn_matrix[i][j] = FLN_Data_FV91[area1][area2]
-
-    """
-    Panel A: CoCoMac Data
-    """
-    ax = axes['A']
-    # ax.yaxis.set_ticks_position("left")
-    # ax.xaxis.set_ticks_position("bottom")
+#     """
+#     Panel A: CoCoMac Data
+#     """
+#     ax = axes['A']
+#     # ax.yaxis.set_ticks_position("left")
+#     # ax.xaxis.set_ticks_position("bottom")
 
-    ax.set_aspect(1. / ax.get_data_ratio())
-    ax.yaxis.set_ticks_position("none")
-    ax.xaxis.set_ticks_position("none")
+#     ax.set_aspect(1. / ax.get_data_ratio())
+#     ax.yaxis.set_ticks_position("none")
+#     ax.xaxis.set_ticks_position("none")
 
-    masked_matrix = np.ma.masked_values(cocomac, 0.0)
-    cmap = pl.cm.binary
-    cmap.set_bad('w', 1.0)
+#     masked_matrix = np.ma.masked_values(cocomac, 0.0)
+#     cmap = pl.cm.binary
+#     cmap.set_bad('w', 1.0)
 
-    x = np.arange(0, len(area_list) + 1)
-    y = np.arange(0, len(area_list[::-1]) + 1)
-    X, Y = np.meshgrid(x, y)
+#     x = np.arange(0, len(area_list) + 1)
+#     y = np.arange(0, len(area_list[::-1]) + 1)
+#     X, Y = np.meshgrid(x, y)
 
-    ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)])
-    ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list), 1)])
-    # ax.set_xticklabels(area_list, rotation=90, size=6.)
-    ax.set_xticklabels(area_list, rotation=90, size=10.)
+#     ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)])
+#     ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list), 1)])
+#     # ax.set_xticklabels(area_list, rotation=90, size=6.)
+#     ax.set_xticklabels(area_list, rotation=90, size=10.)
 
-    # ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)])
-    ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list), 1)])
-    # ax.set_yticklabels(area_list[::-1], size=6.)
-    ax.set_yticklabels(area_list[::-1], size=6.)
+#     # ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)])
+#     ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list), 1)])
+#     # ax.set_yticklabels(area_list[::-1], size=6.)
+#     ax.set_yticklabels(area_list[::-1], size=6.)
 
-    ax.set_ylabel('Target area')
-    ax.set_xlabel('Source area')
+#     ax.set_ylabel('Target area')
+#     ax.set_xlabel('Source area')
 
-    im = ax.pcolormesh(masked_matrix, cmap=cmap,
-                       edgecolors='None', vmin=0., vmax=1.)
+#     im = ax.pcolormesh(masked_matrix, cmap=cmap,
+#                        edgecolors='None', vmin=0., vmax=1.)
 
-    t = FixedLocator([])
-    cbar = pl.colorbar(im, ticks=t, fraction=0.046, ax=ax)
-    cbar.set_alpha(0.)
+#     t = FixedLocator([])
+#     cbar = pl.colorbar(im, ticks=t, fraction=0.046, ax=ax)
+#     cbar.set_alpha(0.)
     # cbar.remove()
 
 #     """
diff --git a/figures/MAM2EBRAINS/M2E_visualize_interareal_connectivity.py b/figures/MAM2EBRAINS/M2E_visualize_interareal_connectivity.py
index fce46e7026065d37e94d0b35b9a057ab545e1b04..1e10dbd6c410442e0d5c9f7eb2e823c7a9648cd0 100644
--- a/figures/MAM2EBRAINS/M2E_visualize_interareal_connectivity.py
+++ b/figures/MAM2EBRAINS/M2E_visualize_interareal_connectivity.py
@@ -26,7 +26,7 @@ def visualize_interareal_connectivity(M):
     """
     # nrows = 2
     nrows = 1
-    ncols = 3
+    ncols = 2
     # width = 6.8556
     width = 15
     panel_wh_ratio = 0.7 * (1. + np.sqrt(5)) / 2.  # golden ratio
@@ -40,23 +40,25 @@ def visualize_interareal_connectivity(M):
     axes = {}
 
     # gs1 = gridspec.GridSpec(2, 2)
-    gs1 = gridspec.GridSpec(1, 3)
+    gs1 = gridspec.GridSpec(1, 2)
     # gs1.update(left=0.06, right=0.95, top=0.95, bottom=0.1, wspace=0.1, hspace=0.3)
     gs1.update(left=0.06, right=0.95, top=0.95, bottom=0.1, wspace=0.3, hspace=0.3)
     
-    axes['A'] = pl.subplot(gs1[:1, :1])
-    axes['B'] = pl.subplot(gs1[:1, 1:2])
-    axes['D'] = pl.subplot(gs1[:1, 2:])
+    # axes['A'] = pl.subplot(gs1[:1, :1])
+    # axes['B'] = pl.subplot(gs1[:1, 1:2])
+    axes['B'] = pl.subplot(gs1[:1, :1])
+    # axes['D'] = pl.subplot(gs1[:1, 2:])
+    axes['D'] = pl.subplot(gs1[:1, 1:2])
 
-    pos = axes['A'].get_position()
+    # pos = axes['A'].get_position()
     pos2 = axes['D'].get_position()
     # axes['C'] = pl.axes([pos.x0 + 0.01, pos2.y0, pos.x1 - pos.x0 - 0.025, 0.23])
 
     # print(pos.x1 - pos.x0 - 0.025)
 
     # labels = ['A', 'B', 'C', 'D']
-    labels = ['A','B', 'D']
-    labels_display = ['Binary connectivity from CoCoMac', 'Full-scale model', 'Down-scale model']
+    labels = ['B', 'D']
+    labels_display = ['Full-scale model', 'Down-scale model']
     # for label in labels:
     for i in range(len(labels)):
         label = labels[i]
@@ -74,71 +76,71 @@ def visualize_interareal_connectivity(M):
                            'horizontalalignment': 'left', 'verticalalignment': 
                            'bottom'}, transform=axes[label].transAxes)
 
-    """
-    Load data
-    """
-    # M = MultiAreaModel({})
-    M_full_scale = MultiAreaModel({})
+#     """
+#     Load data
+#     """
+#     # M = MultiAreaModel({})
+#     M_full_scale = MultiAreaModel({})
     
-    datapath = './multiarea_model/data_multiarea/'
-    with open(os.path.join(datapath, 'viscortex_processed_data.json'), 'r') as f:
-        proc = json.load(f)
-    with open(os.path.join(datapath, 'viscortex_raw_data.json'), 'r') as f:
-        raw = json.load(f)
-
-    FLN_Data_FV91 = proc['FLN_Data_FV91']
+#     datapath = './multiarea_model/data_multiarea/'
+#     with open(os.path.join(datapath, 'viscortex_processed_data.json'), 'r') as f:
+#         proc = json.load(f)
+#     with open(os.path.join(datapath, 'viscortex_raw_data.json'), 'r') as f:
+#         raw = json.load(f)
+
+#     FLN_Data_FV91 = proc['FLN_Data_FV91']
+
+#     cocomac_data = raw['cocomac_data']
+#     median_distance_data = raw['median_distance_data']
+
+#     cocomac = np.zeros((32, 32))
+#     conn_matrix = np.zeros((32, 32))
+#     for i, area1 in enumerate(area_list[::-1]):
+#         for j, area2 in enumerate(area_list):
+#             # if M.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]:
+#             if M_full_scale.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]:
+#                 cocomac[i][j] = 1.
+#             if area2 in FLN_Data_FV91[area1]:
+#                 conn_matrix[i][j] = FLN_Data_FV91[area1][area2]
 
-    cocomac_data = raw['cocomac_data']
-    median_distance_data = raw['median_distance_data']
-
-    cocomac = np.zeros((32, 32))
-    conn_matrix = np.zeros((32, 32))
-    for i, area1 in enumerate(area_list[::-1]):
-        for j, area2 in enumerate(area_list):
-            # if M.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]:
-            if M_full_scale.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]:
-                cocomac[i][j] = 1.
-            if area2 in FLN_Data_FV91[area1]:
-                conn_matrix[i][j] = FLN_Data_FV91[area1][area2]
-
-    """
-    Panel A: CoCoMac Data
-    """
-    ax = axes['A']
-    # ax.yaxis.set_ticks_position("left")
-    # ax.xaxis.set_ticks_position("bottom")
+#     """
+#     Panel A: CoCoMac Data
+#     """
+#     ax = axes['A']
+#     # ax.yaxis.set_ticks_position("left")
+#     # ax.xaxis.set_ticks_position("bottom")
 
-    ax.set_aspect(1. / ax.get_data_ratio())
-    ax.yaxis.set_ticks_position("none")
-    ax.xaxis.set_ticks_position("none")
+#     ax.set_aspect(1. / ax.get_data_ratio())
+#     ax.yaxis.set_ticks_position("none")
+#     ax.xaxis.set_ticks_position("none")
 
-    masked_matrix = np.ma.masked_values(cocomac, 0.0)
-    cmap = pl.cm.binary
-    cmap.set_bad('w', 1.0)
+#     masked_matrix = np.ma.masked_values(cocomac, 0.0)
+#     cmap = pl.cm.binary
+#     cmap.set_bad('w', 1.0)
 
-    x = np.arange(0, len(area_list) + 1)
-    y = np.arange(0, len(area_list[::-1]) + 1)
-    X, Y = np.meshgrid(x, y)
+#     x = np.arange(0, len(area_list) + 1)
+#     y = np.arange(0, len(area_list[::-1]) + 1)
+#     X, Y = np.meshgrid(x, y)
 
-    ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)])
-    ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list), 1)])
-    # ax.set_xticklabels(area_list, rotation=90, size=6.)
-    ax.set_xticklabels(area_list, rotation=90, size=10.)
+#     ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)])
+#     ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list), 1)])
+#     # ax.set_xticklabels(area_list, rotation=90, size=6.)
+#     ax.set_xticklabels(area_list, rotation=90, size=10.)
 
-    # ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)])
-    ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list), 1)])
-    # ax.set_yticklabels(area_list[::-1], size=6.)
-    ax.set_yticklabels(area_list[::-1], size=6.)
+#     # ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)])
+#     ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list), 1)])
+#     # ax.set_yticklabels(area_list[::-1], size=6.)
+#     ax.set_yticklabels(area_list[::-1], size=6.)
 
-    ax.set_ylabel('Target area')
-    ax.set_xlabel('Source area')
+#     ax.set_ylabel('Target area')
+#     ax.set_xlabel('Source area')
 
-    im = ax.pcolormesh(masked_matrix, cmap=cmap,
-                       edgecolors='None', vmin=0., vmax=1.)
+#     im = ax.pcolormesh(masked_matrix, cmap=cmap,
+#                        edgecolors='None', vmin=0., vmax=1.)
 
-    t = FixedLocator([])
-    cbar = pl.colorbar(im, ticks=t, fraction=0.046, ax=ax)
-    cbar.set_alpha(0.)
+#     t = FixedLocator([])
+#     cbar = pl.colorbar(im, ticks=t, fraction=0.046, ax=ax)
+#     cbar.set_alpha(0.)
     # cbar.remove()
 
 #     """