diff --git a/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_interareal_connectivity-checkpoint.py b/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_interareal_connectivity-checkpoint.py index fce46e7026065d37e94d0b35b9a057ab545e1b04..1e10dbd6c410442e0d5c9f7eb2e823c7a9648cd0 100644 --- a/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_interareal_connectivity-checkpoint.py +++ b/figures/MAM2EBRAINS/.ipynb_checkpoints/M2E_visualize_interareal_connectivity-checkpoint.py @@ -26,7 +26,7 @@ def visualize_interareal_connectivity(M): """ # nrows = 2 nrows = 1 - ncols = 3 + ncols = 2 # width = 6.8556 width = 15 panel_wh_ratio = 0.7 * (1. + np.sqrt(5)) / 2. # golden ratio @@ -40,23 +40,25 @@ def visualize_interareal_connectivity(M): axes = {} # gs1 = gridspec.GridSpec(2, 2) - gs1 = gridspec.GridSpec(1, 3) + gs1 = gridspec.GridSpec(1, 2) # gs1.update(left=0.06, right=0.95, top=0.95, bottom=0.1, wspace=0.1, hspace=0.3) gs1.update(left=0.06, right=0.95, top=0.95, bottom=0.1, wspace=0.3, hspace=0.3) - axes['A'] = pl.subplot(gs1[:1, :1]) - axes['B'] = pl.subplot(gs1[:1, 1:2]) - axes['D'] = pl.subplot(gs1[:1, 2:]) + # axes['A'] = pl.subplot(gs1[:1, :1]) + # axes['B'] = pl.subplot(gs1[:1, 1:2]) + axes['B'] = pl.subplot(gs1[:1, :1]) + # axes['D'] = pl.subplot(gs1[:1, 2:]) + axes['D'] = pl.subplot(gs1[:1, 1:2]) - pos = axes['A'].get_position() + # pos = axes['A'].get_position() pos2 = axes['D'].get_position() # axes['C'] = pl.axes([pos.x0 + 0.01, pos2.y0, pos.x1 - pos.x0 - 0.025, 0.23]) # print(pos.x1 - pos.x0 - 0.025) # labels = ['A', 'B', 'C', 'D'] - labels = ['A','B', 'D'] - labels_display = ['Binary connectivity from CoCoMac', 'Full-scale model', 'Down-scale model'] + labels = ['B', 'D'] + labels_display = ['Full-scale model', 'Down-scale model'] # for label in labels: for i in range(len(labels)): label = labels[i] @@ -74,71 +76,71 @@ def visualize_interareal_connectivity(M): 'horizontalalignment': 'left', 'verticalalignment': 'bottom'}, transform=axes[label].transAxes) - """ - Load data - """ - # M = MultiAreaModel({}) - M_full_scale = MultiAreaModel({}) +# """ +# Load data +# """ +# # M = MultiAreaModel({}) +# M_full_scale = MultiAreaModel({}) - datapath = './multiarea_model/data_multiarea/' - with open(os.path.join(datapath, 'viscortex_processed_data.json'), 'r') as f: - proc = json.load(f) - with open(os.path.join(datapath, 'viscortex_raw_data.json'), 'r') as f: - raw = json.load(f) - - FLN_Data_FV91 = proc['FLN_Data_FV91'] +# datapath = './multiarea_model/data_multiarea/' +# with open(os.path.join(datapath, 'viscortex_processed_data.json'), 'r') as f: +# proc = json.load(f) +# with open(os.path.join(datapath, 'viscortex_raw_data.json'), 'r') as f: +# raw = json.load(f) + +# FLN_Data_FV91 = proc['FLN_Data_FV91'] + +# cocomac_data = raw['cocomac_data'] +# median_distance_data = raw['median_distance_data'] + +# cocomac = np.zeros((32, 32)) +# conn_matrix = np.zeros((32, 32)) +# for i, area1 in enumerate(area_list[::-1]): +# for j, area2 in enumerate(area_list): +# # if M.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]: +# if M_full_scale.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]: +# cocomac[i][j] = 1. +# if area2 in FLN_Data_FV91[area1]: +# conn_matrix[i][j] = FLN_Data_FV91[area1][area2] - cocomac_data = raw['cocomac_data'] - median_distance_data = raw['median_distance_data'] - - cocomac = np.zeros((32, 32)) - conn_matrix = np.zeros((32, 32)) - for i, area1 in enumerate(area_list[::-1]): - for j, area2 in enumerate(area_list): - # if M.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]: - if M_full_scale.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]: - cocomac[i][j] = 1. - if area2 in FLN_Data_FV91[area1]: - conn_matrix[i][j] = FLN_Data_FV91[area1][area2] - - """ - Panel A: CoCoMac Data - """ - ax = axes['A'] - # ax.yaxis.set_ticks_position("left") - # ax.xaxis.set_ticks_position("bottom") +# """ +# Panel A: CoCoMac Data +# """ +# ax = axes['A'] +# # ax.yaxis.set_ticks_position("left") +# # ax.xaxis.set_ticks_position("bottom") - ax.set_aspect(1. / ax.get_data_ratio()) - ax.yaxis.set_ticks_position("none") - ax.xaxis.set_ticks_position("none") +# ax.set_aspect(1. / ax.get_data_ratio()) +# ax.yaxis.set_ticks_position("none") +# ax.xaxis.set_ticks_position("none") - masked_matrix = np.ma.masked_values(cocomac, 0.0) - cmap = pl.cm.binary - cmap.set_bad('w', 1.0) +# masked_matrix = np.ma.masked_values(cocomac, 0.0) +# cmap = pl.cm.binary +# cmap.set_bad('w', 1.0) - x = np.arange(0, len(area_list) + 1) - y = np.arange(0, len(area_list[::-1]) + 1) - X, Y = np.meshgrid(x, y) +# x = np.arange(0, len(area_list) + 1) +# y = np.arange(0, len(area_list[::-1]) + 1) +# X, Y = np.meshgrid(x, y) - ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)]) - ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list), 1)]) - # ax.set_xticklabels(area_list, rotation=90, size=6.) - ax.set_xticklabels(area_list, rotation=90, size=10.) +# ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)]) +# ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list), 1)]) +# # ax.set_xticklabels(area_list, rotation=90, size=6.) +# ax.set_xticklabels(area_list, rotation=90, size=10.) - # ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)]) - ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list), 1)]) - # ax.set_yticklabels(area_list[::-1], size=6.) - ax.set_yticklabels(area_list[::-1], size=6.) +# # ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)]) +# ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list), 1)]) +# # ax.set_yticklabels(area_list[::-1], size=6.) +# ax.set_yticklabels(area_list[::-1], size=6.) - ax.set_ylabel('Target area') - ax.set_xlabel('Source area') +# ax.set_ylabel('Target area') +# ax.set_xlabel('Source area') - im = ax.pcolormesh(masked_matrix, cmap=cmap, - edgecolors='None', vmin=0., vmax=1.) +# im = ax.pcolormesh(masked_matrix, cmap=cmap, +# edgecolors='None', vmin=0., vmax=1.) - t = FixedLocator([]) - cbar = pl.colorbar(im, ticks=t, fraction=0.046, ax=ax) - cbar.set_alpha(0.) +# t = FixedLocator([]) +# cbar = pl.colorbar(im, ticks=t, fraction=0.046, ax=ax) +# cbar.set_alpha(0.) # cbar.remove() # """ diff --git a/figures/MAM2EBRAINS/M2E_visualize_interareal_connectivity.py b/figures/MAM2EBRAINS/M2E_visualize_interareal_connectivity.py index fce46e7026065d37e94d0b35b9a057ab545e1b04..1e10dbd6c410442e0d5c9f7eb2e823c7a9648cd0 100644 --- a/figures/MAM2EBRAINS/M2E_visualize_interareal_connectivity.py +++ b/figures/MAM2EBRAINS/M2E_visualize_interareal_connectivity.py @@ -26,7 +26,7 @@ def visualize_interareal_connectivity(M): """ # nrows = 2 nrows = 1 - ncols = 3 + ncols = 2 # width = 6.8556 width = 15 panel_wh_ratio = 0.7 * (1. + np.sqrt(5)) / 2. # golden ratio @@ -40,23 +40,25 @@ def visualize_interareal_connectivity(M): axes = {} # gs1 = gridspec.GridSpec(2, 2) - gs1 = gridspec.GridSpec(1, 3) + gs1 = gridspec.GridSpec(1, 2) # gs1.update(left=0.06, right=0.95, top=0.95, bottom=0.1, wspace=0.1, hspace=0.3) gs1.update(left=0.06, right=0.95, top=0.95, bottom=0.1, wspace=0.3, hspace=0.3) - axes['A'] = pl.subplot(gs1[:1, :1]) - axes['B'] = pl.subplot(gs1[:1, 1:2]) - axes['D'] = pl.subplot(gs1[:1, 2:]) + # axes['A'] = pl.subplot(gs1[:1, :1]) + # axes['B'] = pl.subplot(gs1[:1, 1:2]) + axes['B'] = pl.subplot(gs1[:1, :1]) + # axes['D'] = pl.subplot(gs1[:1, 2:]) + axes['D'] = pl.subplot(gs1[:1, 1:2]) - pos = axes['A'].get_position() + # pos = axes['A'].get_position() pos2 = axes['D'].get_position() # axes['C'] = pl.axes([pos.x0 + 0.01, pos2.y0, pos.x1 - pos.x0 - 0.025, 0.23]) # print(pos.x1 - pos.x0 - 0.025) # labels = ['A', 'B', 'C', 'D'] - labels = ['A','B', 'D'] - labels_display = ['Binary connectivity from CoCoMac', 'Full-scale model', 'Down-scale model'] + labels = ['B', 'D'] + labels_display = ['Full-scale model', 'Down-scale model'] # for label in labels: for i in range(len(labels)): label = labels[i] @@ -74,71 +76,71 @@ def visualize_interareal_connectivity(M): 'horizontalalignment': 'left', 'verticalalignment': 'bottom'}, transform=axes[label].transAxes) - """ - Load data - """ - # M = MultiAreaModel({}) - M_full_scale = MultiAreaModel({}) +# """ +# Load data +# """ +# # M = MultiAreaModel({}) +# M_full_scale = MultiAreaModel({}) - datapath = './multiarea_model/data_multiarea/' - with open(os.path.join(datapath, 'viscortex_processed_data.json'), 'r') as f: - proc = json.load(f) - with open(os.path.join(datapath, 'viscortex_raw_data.json'), 'r') as f: - raw = json.load(f) - - FLN_Data_FV91 = proc['FLN_Data_FV91'] +# datapath = './multiarea_model/data_multiarea/' +# with open(os.path.join(datapath, 'viscortex_processed_data.json'), 'r') as f: +# proc = json.load(f) +# with open(os.path.join(datapath, 'viscortex_raw_data.json'), 'r') as f: +# raw = json.load(f) + +# FLN_Data_FV91 = proc['FLN_Data_FV91'] + +# cocomac_data = raw['cocomac_data'] +# median_distance_data = raw['median_distance_data'] + +# cocomac = np.zeros((32, 32)) +# conn_matrix = np.zeros((32, 32)) +# for i, area1 in enumerate(area_list[::-1]): +# for j, area2 in enumerate(area_list): +# # if M.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]: +# if M_full_scale.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]: +# cocomac[i][j] = 1. +# if area2 in FLN_Data_FV91[area1]: +# conn_matrix[i][j] = FLN_Data_FV91[area1][area2] - cocomac_data = raw['cocomac_data'] - median_distance_data = raw['median_distance_data'] - - cocomac = np.zeros((32, 32)) - conn_matrix = np.zeros((32, 32)) - for i, area1 in enumerate(area_list[::-1]): - for j, area2 in enumerate(area_list): - # if M.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]: - if M_full_scale.K_areas[area1][area2] > 0. and area2 in cocomac_data[area1]: - cocomac[i][j] = 1. - if area2 in FLN_Data_FV91[area1]: - conn_matrix[i][j] = FLN_Data_FV91[area1][area2] - - """ - Panel A: CoCoMac Data - """ - ax = axes['A'] - # ax.yaxis.set_ticks_position("left") - # ax.xaxis.set_ticks_position("bottom") +# """ +# Panel A: CoCoMac Data +# """ +# ax = axes['A'] +# # ax.yaxis.set_ticks_position("left") +# # ax.xaxis.set_ticks_position("bottom") - ax.set_aspect(1. / ax.get_data_ratio()) - ax.yaxis.set_ticks_position("none") - ax.xaxis.set_ticks_position("none") +# ax.set_aspect(1. / ax.get_data_ratio()) +# ax.yaxis.set_ticks_position("none") +# ax.xaxis.set_ticks_position("none") - masked_matrix = np.ma.masked_values(cocomac, 0.0) - cmap = pl.cm.binary - cmap.set_bad('w', 1.0) +# masked_matrix = np.ma.masked_values(cocomac, 0.0) +# cmap = pl.cm.binary +# cmap.set_bad('w', 1.0) - x = np.arange(0, len(area_list) + 1) - y = np.arange(0, len(area_list[::-1]) + 1) - X, Y = np.meshgrid(x, y) +# x = np.arange(0, len(area_list) + 1) +# y = np.arange(0, len(area_list[::-1]) + 1) +# X, Y = np.meshgrid(x, y) - ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)]) - ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list), 1)]) - # ax.set_xticklabels(area_list, rotation=90, size=6.) - ax.set_xticklabels(area_list, rotation=90, size=10.) +# ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)]) +# ax.set_xticks([i + 0.5 for i in np.arange(0, len(area_list), 1)]) +# # ax.set_xticklabels(area_list, rotation=90, size=6.) +# ax.set_xticklabels(area_list, rotation=90, size=10.) - # ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)]) - ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list), 1)]) - # ax.set_yticklabels(area_list[::-1], size=6.) - ax.set_yticklabels(area_list[::-1], size=6.) +# # ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list) + 1, 1)]) +# ax.set_yticks([i + 0.5 for i in np.arange(0, len(area_list), 1)]) +# # ax.set_yticklabels(area_list[::-1], size=6.) +# ax.set_yticklabels(area_list[::-1], size=6.) - ax.set_ylabel('Target area') - ax.set_xlabel('Source area') +# ax.set_ylabel('Target area') +# ax.set_xlabel('Source area') - im = ax.pcolormesh(masked_matrix, cmap=cmap, - edgecolors='None', vmin=0., vmax=1.) +# im = ax.pcolormesh(masked_matrix, cmap=cmap, +# edgecolors='None', vmin=0., vmax=1.) - t = FixedLocator([]) - cbar = pl.colorbar(im, ticks=t, fraction=0.046, ax=ax) - cbar.set_alpha(0.) +# t = FixedLocator([]) +# cbar = pl.colorbar(im, ticks=t, fraction=0.046, ax=ax) +# cbar.set_alpha(0.) # cbar.remove() # """