diff --git a/.ipynb_checkpoints/multi-area-model-checkpoint.ipynb b/.ipynb_checkpoints/multi-area-model-checkpoint.ipynb index 9651faa5271e1ae3f609f169f6d65601be9cc624..695572184de83896a2d267ffc61402e3b9702e5c 100644 --- a/.ipynb_checkpoints/multi-area-model-checkpoint.ipynb +++ b/.ipynb_checkpoints/multi-area-model-checkpoint.ipynb @@ -1523,7 +1523,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "id": "a8e77836-4c37-4b78-b7c4-5e11bc67b4fa", "metadata": {}, "outputs": [], @@ -1531,19 +1531,44 @@ "# load data\n", "\n", "# correlation coefficients\n", - "fn = os.path.join(data_path, label, 'Analysis', 'corrcoeff.json')\n", + "# fn = os.path.join(data_path, label, 'Analysis', 'corrcoeff.json')\n", + "fn = os.path.join(data_path, label, 'Analysis', 'synchrony.json')\n", + "# synchrony.json\n", "with open(fn, 'r') as f:\n", " corrcoeff = json.load(f)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "id": "218367da-82ef-47b6-bf15-083ef3d43013", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Correlation coefficient')" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAECCAYAAAAb5qc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWjElEQVR4nO3dfZAkdX3H8c/H40EhiCJkx4C4JCUYVASzRhMkHLBiPJ8qkQIl50N8uGAFH9hD4vOOYkUp3NMoSQylIiWIsQgaAsfT3gNCEcE5BBSJltGgRHZdsCKKcAJ+80f34Nzc7jzs9GzP/Ob9quq67p5f//o7fXef7f3NdLcjQgCAND2m7AIAAP1DyANAwgh5AEgYIQ8ACSPkASBhu5RdwL777hvj4+NllwEAQ2Xbtm33RMR+7dqVHvLj4+Oq1WpllwEAQ8X2nZ20Y7gGABJGyANAwgh5AEgYIQ8ACSPkASBhhHyDSkWyW0+VStlVAkDnCPkG8/PFtAGAQUHIA0DCRi7kbZe+n2q1uqzXBtmw1g2kzu0eGmL7eZI+LukRSbWIOM32bpLOk3S+pA9IWiVpc0S81/bqfP0P8y42RMSlS/U/MTERK3nFq20t9Z47zf9OnrPSej/Le22QDWvdwLCyvS0iJtq16+S2BndKOjYiHrR9oe1nSXqSpBskbYmIq/MdbrFdv4/CFyLifcstfjCtkTSZza2Z1caNG8stBwA60Ha4JiLmIuLBfPFhZWf0x0u6JiIekiTbqyTNSbqvk53aXme7Zru2sLCwvMp7YHvRSWp1Kj8pab2k9briiiuW7OO3fe2oWq3u8Fp9vlqttnxtkA1r3cAoaTtc82hD+zBJH4mIl9i+OCJOyNevk3SGpCsj4tRFhmvOiIiblup3eIZrNigLeWlmZkZTU1M97IfhGgC96XS4pqMPXm3vI+kcSW/M5++tvxYR50o6RNIBto/IV38hIlbn05IBP1xmJc1ImtHs7GzZxQBAR9qOydveRdIFkt4ZEXO2T5S0KX9t94jYHhGP2L5f0gOS9u5rxaX57Rj8xo2tz+LbmZ6eXtZrg2xY6wZS18m3a14t6ZOSbs9XbZd0ckTca/sUSa9S9sNiS0S8f5Hhms9GxBeW6n+lh2taKfLbNQDQT4V9uyYiLpJ0UUPHJ0bEvflrn5b06ab2WyU9tduCAQDF6/piqIj4cj8KAQAUb+SueG1lbKyYNgAwKEp/xusgmZsruwIAKBZn8gCQMEIeABJGyANAwgh5AEgYIQ8ACSPkASBhhDwAJIyQB4CEEfIAkDBCHgASRsgvR6WS3Ze4eapUyq4MAHZAyC/H/Hx36wGgJIQ8ACSMkAeAhBHyTarV6k7r3OlzATtsX9/HYvtqXt/cZqltMBz4+8NKa/uM1x0a28+T9HFJj0iqRcRptneTdJ6y57p+QNIqSZsj4r35814nI+J9S/U5SM94lbKAbj4mO61rFeIRi/axWH9LtWtc39ymXd8YbPz9oSiFPeO1yZ2Sjo2IB21faPtZkp4k6QZlD/K+Ot/5Ftv7dV11QjZs2CBJmp2d1caNG0uuBsCo6mq4JiLmIuLBfPFhZWf0x0u6JiIekiTbqyTNSbpvqX5sr7Nds11bWFhYXuUFqlarsv3oMEt9vvFX6/o621rqPN767VDN+vXrtX79ek1OTi65j8Z+V69evWgNzfteqj4Mrk7+fQH90tVwzaMb2YdJ+khEvMT2xRFxQr5+naQzJF0ZEaeO8nBN3czMjKamphbtj+Ga0cPfH4rS6XBN1x+82t5H0jmS3pjP31t/LSLOlXSIpANsH9Ft3ymZmZnRzMyMZmdnyy4FwAjrakze9i6SLpD0zoiYs32ipE35a7tHxPaIeMT2/ZIekLR34RX32fT0dCH91M/em8/iG/ex1L4a1ze3Kao+lIO/P6y0br9d82pJn5R0e75qu6STI+Je26dIepWyHxxbIuL9wzhc05E2wzUA0G+dDtcsa0y+YScnRsSXl92BCHkAWI6+jck36jXgh9bYWHfrAaAk3X5PHpI0N1d2BQDQEW5rAAAJI+QBIGGEPAAkjJAHgIQR8gCQMEIeABJGyANAwgh5AEgYIQ8ACSPkASBhhDwAJGxkQ75SyW4mWZ8qlbIrAoDijWzIz8+3XgaAFIxsyAPAKBiKkC/iqfZu9aCPFu1b7buIugCgn3p6MtSjndhTkv5S0lpJN0q6I3/pi/nDvZfUyZOhinjCfXMfi2V+4y7q7Vvtu4i6AGA5On0yVM8PDbG9u6RnN6y6JiLW9trvylgjaTKfn5W0scRaAKB4RQzXvEnS+d1sYHud7Zrt2sLCwqJtqtWqbD86bFKf72WIpN5H1qeVBfz6fLqi6XUtuu9+1AUA/dLrg7x3lXRhRJxo+3rtPFyzISIubdVHucM1G5QFvCTNKGJqp/YM1wAYRCs1XPMaSV9sWjdEwzWzkmYa5qdatAWA4dNryB8i6XDbp0h6hqSX9V7Szqanp/vRrXYcg1884Fvtu391AUAxCvl2jSQtMVxzeUSc3Wq7ToZrirDcb9cAwCBasW/X1EXEC/LZsaL6LFK3gU3AA0jBUFwMBQBYnpEN+bGx1ssAkILChmuGzdxc2RUAQP+N7Jk8AIwCQh4AEkbIA0DCCHkASBghDwAJI+QBIGGEPAAkjJAHgIQR8gCQMEIeABJGyANAwgj5IlQq2Q3qW02VStlVAhhBhHwR5ueLaQMABSPkASBhhYe87Snb19set31BEX1Wq9UiuimMF3t24AD322zQjieA/ik05G3vLunZRfYpSR/84AeL7nKkcTyB0VH0mfybJJ1fcJ9DZ42kDfm0puRaAIy2wkLe9q6Sjo6IzR20XWe7Zru2sLCwaJtqtSrbjw5h1OcHZaihXo9tNQ+yTEpan0+T9fbN2ywy9dOgH08A/eGIKKYj+w2SfhYRX7V9vaS1kj4cEWtbbTcxMRG1Wq1d3yqqziLsVE9TQG9QFvCSNCNpqv5Cm/ewUu9z0I4ngO7Z3hYRE+3aFfmM10MkHW77FEnPkPSyAvseKrPKwr0+P9WiLQD0U2EhHxF/V5/Pz+T/Q9Lziuh7enq6iG5WzMaG+UEM+GE7ngCWr7DhmuXqZLhm4HU6ns4QCYCCdDpcw8VQAJAwQr4IY2PFtAGAghX5wevompsruwIAWBRn8gCQMEIeABJGyANAwgh5AEgYIQ8ACSPkASBhhDwAJIyQB4CEEfIAkDBCHgASRsgDQMII+UVUKtndg1tNlUrZVQJAe4T8Iubni2kDAGUj5AEgYSMZ8u70SU5Dvk8A6DnkbY/bnre91fbVTctbba8rolAAQPeKemjINRGxVspCv3EZAFCeokL+GNvXSbpE0lcK6nOArJE0mc/PStpYYi0A0LkiQv5uSQdL2i7p3yVtkvRC21vz1zdExKWNG+RDOOsk6cADDyyghO61HyOPhvlJSevz+Zl6D2KYHcCg6znkI2K7soCX7cskvVRthmsi4lxJ50rSxMRELNWunyKW3m1n4R1q0cUiffITAcDKK+KD170aFo9UdiafmFllZ/Az+TwADIcihmuOsn2msrP56yXNa8fhmssj4uwC9lOixjH4qdKqAIBuFTFcs1E7fxI51mu//dRqqCalfQLASF4MBQCjgpBfxFgHv4d00gYAylbU9+STMjdXdgUAUAzO5AEgYYQ8ACSMkAeAhBHyAJAwQh4AEkbIA0DCCHkASBghDwAJI+QBIGGEPAAkjJAHgIQR8iupUskeO1XEVKmU/W4ADAFCfiXNzw9mXwCSRcgDQMIKC3nb47bnbW+1fXW+fEFR/Q+qVB7Q3e37qFar/SlkyHAcMOhc1GPpbI9L+nBErF1seSkTExNRq9UKqaEMtjt/tF/RPxAKfKRgV+9jGe1TxXFAWWxvi4iJdu2KfmjIMbavk3SJpK8U3PdIWiNpMp+f1c4P0wWAVoock79b0sGSjlGWS49fqqHtdbZrtmsLCwsFllAO251Ny+h7UtL6fJpsWO9u9tvB1IlqtbpD+/r8qA1ZcBwwTAobrtmhU/stkp4o6VCGa3Zo3HX/G5QFvCTNSJpqfJHhmtJxHFCWTodrivzgda+GxSMlbSqq71E2qyzcZ/J5AOhGkWPyR9k+U9J2SddL4ovcBWgcg59astXKm56eLruEgcBxwKDry3BNN4Z9uKYrA/ztGgDDZcWHawAAg4eQB4CEEfIraWxsMPsCkKyiL4ZCK3NzZVcAYMRwJg8ACSPkASBhhDwAJIyQB4CEEfIAkDBCHgASRsgDQMIIeQBIGCEPAAkj5AEgYYR8H1Qq2V2FW02VStlVAhgFhHwfzHfwuJRO2gBArwh5AEgYIQ8ACSsk5G2/1vYm21ttH2l7Pp/fantdEfsYFC76EX4l7QPAaOj5fvK295d0dEQcly+PS7omItb22jcAoDdFPDTkRZJW2d4k6TuSPlFAn4lZI2kyn5+VtLHEWgCMkiKGa8Yk7Zafyf9K0iskvbBhuOblzRvYXme7Zru2sLBQQAkry3bLSWoebpmUtD6f6mHfansAKEYRZ/I/l3RtPr9Z0oTaDNdExLmSzpWkiYmJKKCGFRXRuuTOcjq0VDcEPYCiFHEmf4Okw/L5wyUNXWj336ykmXyaLbkWAKOk5zP5iLjF9gO2t0q6R9J7JF2XL0vS5RFxdq/7GW6NY/BTpVUBYPQUMVyjiDi9adVYEf0OonZDNcOyDwCjgYuhACBhhHwfjHXwe0wnbQCgV4UM12BHc3NlVwAAGc7kASBhhDwAJIyQB4CEEfIAkDBCHgASRsgDQMIIeQBIGCEPAAkj5AEgYYQ8ACSMkAeAhBHyZapUssdILWeqVMquHsAQIOTLND9fzrYARgYhDwAJI+QLlsJDuLt5D9VqtX+FDBGOAwaVi3zUnO3XSnqdpFWS3ivpLRGxttU2ExMTUavVCquhbLY7f3xfrz8Q+vSYwG7eQ1fvN2EcB6w029siYqJdu8IeGmJ7f0lHR8Rx+fJ4UX1DWiNpMp+f1Y6PBgeApRQ5XPMiSatsb7L9KWVn84uyvc52zXZtYWGhwBIGg+3Opi76nJS0Pp8mJbmb/XQ5tVOtVndoW58ftSELjgOGQWHDNbbfLelZEXGy7bMkzUt6DsM1LRt33O8GZQEvSTOSpiSGawYIxwErrdPhmiLP5H8u6dp8frOkxxXY98ibVRbuM/k8AHSiyAd53yDpzfn84ZI4rSlQ4xj8VGlV7Gx6errsEgYCxwGDquhv13xM0oSkeyS9R9IHGK5p2bi3nQ3AcA2Acqz4t2skKSJOb1rVMuBTlEI4pvAeAGS4GAoAEkbIl2lsrJxtAYyMQodr0KW5ubIrAJA4zuQBIGGEPAAkjJAHgIQR8gCQMEIeABJGyANAwgh5AEgYIQ8ACSPkASBhhDwAJIyQB4CEEfIAkDBCHgASRsgDQMIIeQBIGCEPAAkj5AEgYS77oc22FyTd2abZvpLuWYFyUsdx7B3HsBgcx94dEhF7tWtU+uP/ImK/dm1s1yJiYiXqSRnHsXccw2JwHHtnu9ZJO4ZrACBhhDwAJGxYQv7csgtIBMexdxzDYnAce9fRMSz9g1cAQP8My5k8AGAZCHkASNjAh7ztP7f9Xdvft/2ususZNrafYnuL7Tts32777WXXNKxsr7L9TduXlV3LsLL9BNsX2/6v/N/kn5Rd07CxfVr+f/nbti+y/dhW7Qc65G2vkvSPkl4s6VBJr7Z9aLlVDZ2HJa2PiD+U9HxJf8sxXLa3S7qj7CKG3D9IujIini7p2eJ4dsX2/pLeJmkiIp4paZWkV7XaZqBDXtIfS/p+RPwgIn4t6UuSXlFyTUMlIu6OiJvz+V8o+0+1f7lVDR/bB0h6iaTPlF3LsLL9eEl/JumzkhQRv46I/yu1qOG0i6TH2d5F0h6SftKq8aCH/P6SftywfJcIqGWzPS7pCEk3llzKMPqEpDMk/abkOobZ70takHRePuz1Gdt7ll3UMImI/5X0MUk/knS3pJ9HxNWtthn0kPci6/jO5zLY/h1J/ybpHRFxX9n1DBPbL5X004jYVnYtQ24XSc+R9M8RcYSk+yXxOVsXbD9R2WjGQZJ+T9Kette22mbQQ/4uSU9pWD5AbX41wc5s76os4C+MiEvKrmcIHSnp5bb/R9mQ4bG2Lyi3pKF0l6S7IqL+m+TFykIfnZuU9MOIWIiIhyRdIulPW20w6CH/DUlPs32Q7d2UfcBwack1DRXbVjYGekdEbCi7nmEUEe+OiAMiYlzZv8HNEdHy7Ak7i4g5ST+2fUi+6jhJ3ymxpGH0I0nPt71H/n/7OLX58Lr0u1C2EhEP2z5V0lXKPkX+XETcXnJZw+ZISa+R9C3bt+Tr3hMRG8srCSPsrZIuzE/afiDpr0uuZ6hExI22L5Z0s7Jvzn1TbW5vwG0NACBhgz5cAwDoASGPntmu2P6S7f+2/R3bG20f3If9jNv+dgdtTm5YnrD9yaJr6UV+leJt+ZWLT7d9S/6Vwj+wfUObbT9ke3KZ+z3c9prlVY1hxXANepJ/+HODpPMj4tP5usMl7RUR13Ww/aqIeGSp5aa245Iuy6/0W6q/1ZJOj4iXdvE2VoztiqQbI+Kp+fK7JD0uIqZXYN+vV3al5Kn93hcGB2fy6NUxkh6qB7wkRcQtEXGdM2fn99j4lu2TpCyI8/vpfFHZB8LNy6vy7b6Rn/H+TfNO8zP262zfnE/1r5F9VNJR+dnxaXnfl+Xb7GP7q3mfX7d9WL6+avtztrfa/oHtty32RvP7KN1s+1bbm9r0uWfe5zfys/T6ldpXS/rdvL5pSe+Q9CbbW/LtftmwvzPy43ar7Y/m6z5v+4R8/o9sX2t7m+2rbD85X7/V9lm2b7L9PdtH5R90fkjSSfm+T+r2LxpDKiKYmJY9KbuPxseXeO2Vkq5R9s2oMWVf/3qypNXKLoQ5KG/XvLxO0vvy+d0l1ZRd/DEu6dv5+j0kPTaff5qkWkNflzXU8OiypE9Jms7nj5V0Sz5fVfbbyO7KHjB9r6Rdm97Lfsquvq7XuE+bPv9e0tp8/gmSvidpz8b30LDv0xuWf5n/+eK8pj2a9vd5SSdI2jV/fb98/UnKvn0mSVslzeTzayTN5vOvl3RO2f9mmFZ2GuivUGLovUDSRZENv8zbvlbScyXdJ+mmiPhhQ9vG5eMlHVY/Y5W0t7Ig/15D+10lnZMPDT0iqZPPAF6g7AePImKz7SfZ3jt/7fKI2C5pu+2fKvuhdFfDts+X9LV6jRHxszZ9Hq/sAqrT83aPlXSgpAc6qFPKLno5LyJ+1bS/ukMkPVPSNdmImVYpu8y9rn7R2zZlP1gwogh59Op2ZWeWi1nsthR197dYtqS3RsRVO3SWjcnXnSZpXtmdDB8j6cEOam11m4ztDese0c7/N6zFb6mxVJ+W9MqI+O4OjXd8D60stb/G12+PiKVu1Vt/P4u9F4wQxuTRq82Sdrf95voK28+1fbSkrykbA15lez9ldyC8qYM+r5L0Fme3Y5Dtg73zjaz2lnR3RPxG2cVeq/L1v5C01xL9fk3SX+V9rpZ0T3R+H5//lHS07YPy7fdp0+dVkt6afzAt20d0uJ+6qyW9wfYeTfur+66k/Zzfj932rraf0abPVscGiSLk0ZOICEl/IemFzr5CebuyceafSPqKpNsk3arsh8EZkV3a3s5nlF3ufrOzr0z+i3Y+G/0nSa+z/XVlQzX13wRuk/Rw/mHlaU3bVCVN2L5N2Qe0r+vifS4o+6zgEtu3SvrXNn2eqWxI6bb8PZzZ6b7y/V2p7BYeNWdXKp/e9Pqvlf0GdVZezy1qcw8TSVskHcoHr6OFr1ACQMI4kweAhBHyAJAwQh4AEkbIA0DCCHkASBghDwAJI+QBIGH/DxLdb6d/PwxfAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "print(\"plotting Synchrony\")\n", + "# print(\"plotting Synchrony\")\n", "\n", "syn = np.zeros((len(M.area_list), 8))\n", "for i, area in enumerate(M.area_list):\n", @@ -1560,7 +1585,8 @@ "syn = np.transpose(syn)\n", "masked_syn = np.ma.masked_where(syn < 1e-4, syn)\n", "\n", - "ax = axes['E']\n", + "# ax = axes['E']\n", + "ax = plt.subplot()\n", "d = ax.boxplot(np.transpose(syn), vert=False,\n", " patch_artist=True, whis=1.5, showmeans=True)\n", "set_boxplot_props(d)\n", @@ -1571,7 +1597,8 @@ "ax.set_yticklabels(population_labels[::-1], size=8)\n", "ax.set_yticks(np.arange(1., len(M.structure['V1']) + 1., 1.))\n", "ax.set_ylim((0., len(M.structure['V1']) + .5))\n", - "ax.set_xticks(np.arange(0.0, 0.601, 0.2))\n", + "# ax.set_xticks(np.arange(0.0, 0.601, 0.2))\n", + "ax.set_xticks(np.arange(0.0, 10.0, 2.0))\n", "ax.set_xlabel('Correlation coefficient', labelpad=-0.1)" ] }, @@ -1579,7 +1606,6 @@ "cell_type": "markdown", "id": "a3847e67", "metadata": { - "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ @@ -1589,7 +1615,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "id": "65377033-f3c0-4f90-be13-70594cfda292", "metadata": {}, "outputs": [], @@ -1604,12 +1630,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 64, "id": "d7480a9b", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.axis.XTick at 0x7f02ed742ca0>,\n", + " <matplotlib.axis.XTick at 0x7f02ed742c70>,\n", + " <matplotlib.axis.XTick at 0x7f02ed7423a0>]" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAECCAYAAAAb5qc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAATWUlEQVR4nO3df4xlZ13H8c+H7Q+NlArdde6mBYcY2gRoLWEKxhbbwlB0DVQFmkq2KAIDJBp1F9QYk7kbyh+k7qLSmLoBDNBSBVtIoU1oZ7uLXZYUbpGotJQQobEuM05LUii2K61f/7jnLjPD3Jl75z7nPvc+9/1KTnLOvefH95yZ/eyZ7/3xOCIEACjTM3IXAACoDyEPAAUj5AGgYIQ8ABSMkAeAgp2Su4Dt27fH9PR07jIAYKzcd999j0TEjs3Wyx7y09PTarVaucsAgLFi+6Fe1qNdAwAFI+QBoGCEPAAUjJAHgIIR8gBQMEI+s0ZDsuubGo3cZwggJ0I+s6Wl8d4/gNFGyANAwYoJ+WazmeW4trMcd5RwDYDRtWnI23657WO277H9geqx02zfZPsK20dtf8n2+6rnLrP9kO0j1fS6uk9Ckvbt2zeMwwDAWOnlaw0ekvTKiHiyCvbzJZ0l6ZikwxFxpyTZPmy78z0KH4+Iv6in5Em0S9JsNb8g6Y6MtQAYJ5veyUfEYkQ8WS0+JelpSVdIuisifiRJtrdJWpT0/V4OanvOdst2a3l5eWuVq92isX2yXdCZH3brpnPcrUxSL62OWUl7q2l2k3V/orqB6uvtHACMqp578rYvkLQ9Iu6XdG5EfLN6fE7Sg5IejYgT1erXrGjXvGztviLiYETMRMTMjh2bfolaV81mUxGhzji1nflhh3znuFuZpLrH2N16bb2fA4BR1VPI236OpOslvbWaf7TzXEQclHSepHNsv6R6+OMRcVk1fTl10ZNnQdL+alrIXAuAcbJpT972KZJulPSeiFi0fZWkQ9Vzp0fEiYh42vYPJT0h6cxaK+5ifn4+x2GHZGUPfk+2KgCMn15eeH2jpIskvb/qv56Q9KbqubfYvrraz+GI+IbthtrtmkuqdT4cER9PXPdPyPUWStoVXANglG0a8hFxs6SbO8u2r4qIR6vnbpB0w5r1j0j6+bRlAgC2ou8PQ0XEJ+soBACQXjGfeB1XU1PjvX8Aoy37GK+TbnExdwUASsadPAAUjJAHgIIR8gBQMEIeAApGyANAwQh5ACgYIQ8ABSPkAaBghDwAFIyQB4CCEfIlazQkO+3UaOQ+KwB9IORLtrQ0HvsEUBtCHgAKRsgDQMEI+S7qHE6wGkYRXXB9gHT6CnnbL7d9zPY9tj9QPXaa7ZtsX2H7qO0v2X5f9dxltq+to/C67du3L3cJADCwfgcNeUjSKyPiySrYz5d0lqRjag/kfack2T5se0fiWpHYLkmz1fyCpDsy1gKgHn3dyUfEYkQ8WS0+JelpSVdIuisifiRJtrdJWpT0/W77sT1nu2W7tby8vLXKa9BsNmX7ZLugM19H66az71qnTWqYlbS3mmY3Wfdk3UOoHUA6W+rJ275A0vaIuF/SuRHxzerxOUkPSno0Ik502z4iDkbETETM7NgxOjf8zWZTEaGIkKST83WEfGfftU7Jq5ZiCLUDSKfvkLf9HEnXS3prNf9o57mIOCjpPEnn2H5JsipRiwVJ+6tpIXMtAOrRV0/e9imSbpT0nohYtH2VpEPVc6dHxImIeNr2DyU9IenM5BUPyfz8fO4SareyB78nWxUA6tTvC69vlHSRpPdXvdMTkt5UPfcW21dX+zwcEd+wPbafga/zLZS0JDbG9QHS8SD/oGxfFRGfHKSAmZmZaLVag+wC3dT1IiYhDGRn+76ImNlsvYE+DDVowKNmU1PjsU8Atem3XYNxsriYuwIAmfG1BgBQMEIeAApGyANAwQh5ACgYIQ8ABSPkAaBghDwAFIyQB4CCEfIAUDBCHgAKRsgDQMEI+YI0Gu0vnqxraoztF0cDk4uQL8jS0njvH0B6hDwAFCx7yB8/fjx3CUm4rgE6JkjKa1jnyF7AOBloZKiTO7H3SPotSbsl3SvpgeqpT1SDe2+0bZQw3Jvt7MPWDeP/mTpPMeU1HIWfB1CnXkeGGnjQENunS/rFFQ/dFRG7B90vUtslabaaX9DqYbwBlCpFu+Ztkj7azwa252y3bLeqZdke+z+xO+eRa5I2upWflbS3mmY3WG/DM6y5/sE0m81V+yrl9woYxKADeZ8q6aaIuMr2Uf1ku+ZARNy2yT5o1ySrYaNnD6gd8JK0X9KeLR2Ddg0wGobVrrlG0ifWPEa7ZiQtqB3unfmthTyA8TJoyJ8n6ULb75T0Ikmv7XcHO3fuHLAE9GZlD778gJ+fn89dAjASkry7RpK6tGtuj4jrNtpuZmYmWq1WkhpyGoX2AO+uASbH0N5d0xERl1SzU6n2OU4Ip8FxDYH0sn8YCgBQH0K+IFM1/w1V9/4BpJesXYP8FhdzVwBg1HAnDwAFI+QBoGCEPAAUjJAHgIIR8gBQMEIeAApGyANAwQh5ACgYIQ8ABSPkAaBghDwAFIyQHxeNRvsL44cxNRq5zxZAIoT8uFhaKvNYAGpFyANAwZKHvO09to/anrZ942brHz9+PHUJSXgYY+mhZ738PJrNZk+PAZMk2RivkmT7dEkHJf2C2uO9XhsRuzfZJkZx2LeRG2902P/pjNK5q7efx3rrjNzPEUik1zFeU9/Jv03SRxPvE33aJelANe3KXAuAvJKFvO1TJV0aEXf3sO6c7ZbtVrUs2yP3p3WnrpGY+qh7VtLeaprdynmP2rlv8FdMs9lctc56243q7xcwDMnaNbZ/T9L3IuIzto+Kdk1afbRrDqgd8JK0X9KerRxvlM5dtGuAtXpt16Qc4/U8SRfafqekF0l6bcJ9ow8Laod7Z35LIQ+gCMlCPiL+tDNf3cl/VtLLN9tu586dqUpA5Y4V85MU8PPz8z09BkySpO+u2YqZmZlotVpZaxgLE/7uGgCr5Xp3DQBghBDy42JqqsxjAahVyhdeUafFxdwVABhD3MkDQMEIeQAoGCEPAAUj5AGgYIQ8ABSMkAeAghHyAFAwQh4ACkbIA0DBCHkAKBghDwAFI+QnXKPR/hbjrUyNRu7qAWyGkJ9wS0t5tgUwHIQ8ABSMkB8jHvboUDUq6VyAUTZwyNuetr1k+4jtO9csH7E9l6LQUjWbzdwljJX1rhfXEOhu4DFebU9LujYidq+3vJlJH+PVtnr9GfSzbu/HH2z7rZaz1XNZb7s6rgsw6nod4zXVyFCX275H0q2SPp1on8hml6TZan5B0h0ZawEwiBQ9+e9KOlfS5Wonw7MkvXpFu+Z1azewPWe7Zbu1vLycoITx0mw2ZftkX7oz30vbobNuqkla71Z+VtLeappd5/mT1Qxw3MGv11avITBJBm7XrNqZ/S5Jz5b0Qto1vRnNds0BtQNekvZL2tN1e9o1QB69tmtSvPB6xorFiyUdGnSfyG1B7XDfX80DGFcpevKvsP1eSSckHZW0pKpdUz1/e0Rcl+A4RZqfn89dwjpW9uC738XnsN71Gs1rCIyGpO2arZj0dk1uud5dA2AwQ2vXAABGFyE/4aam8mwLYDhSvU8eY2pxMXcFAOrEnTwAFIyQB4CCEfIAUDBCHgAKRsgDQMEIeQAoGCEPAAUj5AGgYIQ8ABSMkAeAghHyAFAwQn5cNBrt7wUextRo5D5bAIkQ8uNiaanMYwGoFSEPAAVLFvK2p20v2T5i+85q+cYU+242myl2s2UedPikCZf7+qX8/cn9uwj0K9nwf7anJV0bEbvXW+6ml+H/bCvnMIW5j18VMdzjJTzf3Ncv5fFznwvQ0evwf6kHDbnc9j2SbpX06cT7Rp92SZqt5he0enhuAJMhZU/+u5LOlXS52tnyrG4r2p6z3bLdWl5eXnedZrMp2yf/1O/M5/pzuXP8bNMWap6VtLeaZjdZd9W5Jj7fHFL+/oza7yLQj2TtmlU7td8l6dmSXki7JlkRfW9yQO2Al6T9kvb0szHtmtr3BQyi13ZNyhdez1ixeLGkQ6n2ja1ZUDvc91fzACZPyp78K2y/V9IJSUclJXuz9fz8fKpdTZSVPfi+7uILk/L3h99FjJta2jX96KVdA431u2sApDf0dg0AYPQQ8gBQMEJ+XExNlXksALVK/WEo1GVxMXcFAMYQd/IAUDBCHgAKRsgDQMEIeQAoGCEPAAUj5AGgYIQ8ABSMkAeAghHyAFAwQh4ACkbID0Gj0f6m4LqnRiP3mQIYNYT8ECwlGz5lNI4DYHwQ8gBQMEIeAAqWJORtv9n2IdtHbF9se6maP2J7LsUx6uRhD603prhOwPgZ+PvkbZ8t6dKIeFW1PC3projYPei+AQCDSTFoyGskbbN9SNL9kv4qwT6hXZJmq/kFSXdkrAXAuEoR8lOSTouIV9l+v6QrJb3a9pHq+QMRcdvKDaoWzpwkPe95z0tQwuDqb0VEn+vPStpbze/vcRuLjgqAlVKE/GOSvlDN3y1pRpu0ayLioKSDkjQzM9Nv+tUior4yhhe8oRpPg548MIZSvPB6TNIF1fyF6v+WFetaUPsOfn81DwD9G/hOPiK+ZvuJqj3ziKQ/l3TPinbN7RFx3aDHmTwre/B7slUBYLylaNcoIt695qGpFPsdljpbNSXhOgHjhw9DAUDBCPkhmBrS3zXDOg6A8ZGkXYONLS7mrgDApOJOHgAKRsgDQMEIeQAoGCEPAAUj5AGgYIQ8ABSMkAeAghHyAFAwQh4ACkbIA0DBCHkAKBghP+oajfbQUsOcGo3cZw0gEUJ+1C0tTcYxAdSCkAeAghHyXTBodV6DXP9ms5muEGDMJQ1522+2fcj2EdsX274x5f6BXuzbty93CcDISDZoiO2zJV0aEa+qlqdT7Rv92SVptppf0OohwQFMlpR38q+RtK26k/+gpG3dVrQ9Z7tlu7W8vJywhLRs55+2UPespL3VNLvJuuue9wice7+azeaqbTvztG4w6VKG/JSk06o7+f+RdGW3FSPiYETMRMTMjh07EpaQVkTkn3Kc9wice7+azeaqbTvzhDwmXcqQf0zSF6r5uyX9dMJ9ow8LkvZX00LmWgDklXIg72OS3l7NXyhluQmFVvfg92SrIp/5+fncJQAjI9mdfER8TdITto9IukjSP6XaN9APWjTAj6W8k1dEvHvNQ7tT7n+YttIXRjpcfyANPgwFAAUj5Efd1NRkHBNALZK2a1CDxcXcFQAYY9zJA0DBCHkAKBghDwAFI+QBoGCEPAAUjJAHgIIR8gBQMEIeAApGyANAwQh5ACgYIQ8ABSPkAaBghDwAFIyQB4CCEfIAUDBCHgAKRsgDQMGce8Bk2z+Q9GDWIoDutkt6JHcRwDrOi4gzNltpFIb/ezAiZnIXAazHdovfT4wi261e1qNdAwAFI+QBoGCjEPIHcxcAbIDfT4yqnn43s7/wCgCozyjcyQMAakLIA0DBsoa87V+1/aDtb9n+s5y1ACvZ/ojt/7b977lrAVay/Vzbh20/YPvrtv9ww/Vz9eRtb5P0TUmvlvSwpK9I+u2IuD9LQcAKtn9F0uOSPhYRL85dD9Bhe6eknRHxVdtnSLpP0m90y86cd/Ivk/StiPiPiPhfSf8g6cqM9QAnRcQ/S/pe7jqAtSLiuxHx1Wr+B5IekHR2t/VzhvzZkv5zxfLD2qBQAMBqtqclvUTSvd3WyRnyXucx3s8JAD2w/UxJt0j6o4j4frf1cob8w5Keu2L5HEnHM9UCAGPD9qlqB/xNEXHrRuvmDPmvSHqB7efbPk3S1ZJuy1gPAIw825b0YUkPRMSBzdbPFvIR8ZSk35f0ebVfOPhkRHw9Vz3ASrZvlvQlSefZftj2W3PXBFQulnSNpFfa/lo17eq2Ml9rAAAF4xOvAFAwQh5jx/bjGY75u7av73ObGdt/U81fZvuX66kO6G4URoYCBmZ7W0Q83W05Qz2nRERLUmf0nsvU/gTtsVw1YTJxJ4+xVd0dH7b9CUn/ts7yNtvX2f6K7X+1/Y5qu2fY/tvqez8+Z/sO22+onvuO7e3V/IztI+sc97W277X9L7YXbE9VjzdtH7R9p6SPVfV8rvrAyjsl/XH1ItkrbH+7ehucbD+rOu6pQ7hsmDDcyWPcvUzSiyPi27YvW7M8J+mxiLjI9umSvlgF8EslTUs6X9LPqf3uro/0ccyjkn4pIsL22yT9iaS91XMvlXRJRDxR1aOI+I7tGyQ9HhF/KUnVfx6/Lukzar99+JaI+NGWrgCwAUIe4+7LEfHtLstXSLqgc5cu6UxJL5B0iaRPRcT/SVq0fbjPY54j6R+rL4o6TdLK498WEU/0sI8Pqf2fw2ckvUXS2/usAegJ7RqMux9usGxJfxARF1bT8yPiTq3/lRodT+nH/y5+qss6H5R0fUScL+kda9ZbW8+6IuKLkqZtXyppW0TwlcaoBSGPkn1e0rtW9L7Ptf0zardbXl/15qfUflG04ztqt1wk6fVd9numpP+q5n+nx1p+IOmMNY99TNLNkv6+x30AfSPkUbIPSbpf0lerwT/+Tu0W5S1qf3dS57F7JT1WbbNP0l/bvkdSt3fnNCV9qlrnkR5r+ayk3+y88Fo9dpOkZ6sd9EAt+MQrJpLtZ0bE47bPkvRlSRdHxOKQa3iDpCsj4pphHheThRdeMak+Z/tn1X7h9L0ZAv6Dkn5NUtfvHAFS4E4eAApGTx4ACkbIA0DBCHkAKBghDwAFI+QBoGD/D/k7Lt9knDSwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "print(\"plotting Irregularity\")\n", + "# print(\"plotting Irregularity\")\n", "\n", "LvR = np.zeros((len(M.area_list), 8))\n", "for i, area in enumerate(M.area_list):\n", @@ -1625,7 +1676,8 @@ "LvR = np.transpose(LvR)\n", "masked_LvR = np.ma.masked_where(LvR < 1e-4, LvR)\n", "\n", - "ax = axes['F']\n", + "# ax = axes['F']\n", + "ax = plt.subplot()\n", "d = ax.boxplot(np.transpose(LvR), vert=False,\n", " patch_artist=True, whis=1.5, showmeans=True)\n", "set_boxplot_props(d)\n", @@ -1637,26 +1689,25 @@ "ax.set_ylim((0., len(M.structure['V1']) + .5))\n", "\n", "\n", - "x_max = 2.9\n", + "x_max = 1.9\n", "ax.set_xlim((0., x_max))\n", "ax.set_xlabel('Irregularity', labelpad=-0.1)\n", "ax.set_xticks([0., 1., 2.])\n", "\n", - "axes['G'].spines['right'].set_color('none')\n", - "axes['G'].spines['left'].set_color('none')\n", - "axes['G'].spines['top'].set_color('none')\n", - "axes['G'].spines['bottom'].set_color('none')\n", - "axes['G'].yaxis.set_ticks_position(\"none\")\n", - "axes['G'].xaxis.set_ticks_position(\"none\")\n", - "axes['G'].set_xticks([])\n", - "axes['G'].set_yticks([])" + "# axes['G'].spines['right'].set_color('none')\n", + "# axes['G'].spines['left'].set_color('none')\n", + "# axes['G'].spines['top'].set_color('none')\n", + "# axes['G'].spines['bottom'].set_color('none')\n", + "# axes['G'].yaxis.set_ticks_position(\"none\")\n", + "# axes['G'].xaxis.set_ticks_position(\"none\")\n", + "# axes['G'].set_xticks([])\n", + "# axes['G'].set_yticks([])" ] }, { "cell_type": "markdown", "id": "90ae8f4c", "metadata": { - "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ @@ -1666,10 +1717,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 66, "id": "0308d50a-1906-4860-9194-7f8664bd1f9d", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: '/opt/app-root/src/MAM2EBRAINS/simulations/27d81076e6d6e9e591684be053078477/Analysis/rate_time_series_full/rate_time_series_full_V1.npy'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "Input \u001b[0;32mIn [66]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m area \u001b[38;5;129;01min\u001b[39;00m areas:\n\u001b[1;32m 6\u001b[0m fn \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(data_path, label,\n\u001b[1;32m 7\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAnalysis\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 8\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrate_time_series_full\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 9\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrate_time_series_full_\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m.npy\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(area))\n\u001b[0;32m---> 10\u001b[0m rate_time_series[area] \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/srv/main-spack-instance-2302/spack/opt/spack/linux-ubuntu20.04-x86_64/gcc-10.3.0/py-numpy-1.21.6-6fewtq7oarp3vtwlxrrcofz5sxwt55s7/lib/python3.8/site-packages/numpy/lib/npyio.py:417\u001b[0m, in \u001b[0;36mload\u001b[0;34m(file, mmap_mode, allow_pickle, fix_imports, encoding)\u001b[0m\n\u001b[1;32m 415\u001b[0m own_fid \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 416\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 417\u001b[0m fid \u001b[38;5;241m=\u001b[39m stack\u001b[38;5;241m.\u001b[39menter_context(\u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mos_fspath\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrb\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 418\u001b[0m own_fid \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 420\u001b[0m \u001b[38;5;66;03m# Code to distinguish from NumPy binary files and pickles.\u001b[39;00m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/opt/app-root/src/MAM2EBRAINS/simulations/27d81076e6d6e9e591684be053078477/Analysis/rate_time_series_full/rate_time_series_full_V1.npy'" + ] + } + ], "source": [ "# load data\n", "\n", @@ -1682,14 +1746,14 @@ " 'rate_time_series_full_{}.npy'.format(area))\n", " rate_time_series[area] = np.load(fn)\n", "\n", - "# time series of firing rates convolved with a kernel\n", - "rate_time_series_auto_kernel = {}\n", - "for area in areas:\n", - " fn = os.path.join(data_path, label,\n", - " 'Analysis',\n", - " 'rate_time_series_auto_kernel',\n", - " 'rate_time_series_auto_kernel_{}.npy'.format(area))\n", - " rate_time_series_auto_kernel[area] = np.load(fn)" + "# # time series of firing rates convolved with a kernel\n", + "# rate_time_series_auto_kernel = {}\n", + "# for area in areas:\n", + "# fn = os.path.join(data_path, label,\n", + "# 'Analysis',\n", + "# 'rate_time_series_auto_kernel',\n", + "# 'rate_time_series_auto_kernel_{}.npy'.format(area))\n", + "# rate_time_series_auto_kernel[area] = np.load(fn)" ] }, { diff --git a/multi-area-model.ipynb b/multi-area-model.ipynb index 9651faa5271e1ae3f609f169f6d65601be9cc624..695572184de83896a2d267ffc61402e3b9702e5c 100644 --- a/multi-area-model.ipynb +++ b/multi-area-model.ipynb @@ -1523,7 +1523,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "id": "a8e77836-4c37-4b78-b7c4-5e11bc67b4fa", "metadata": {}, "outputs": [], @@ -1531,19 +1531,44 @@ "# load data\n", "\n", "# correlation coefficients\n", - "fn = os.path.join(data_path, label, 'Analysis', 'corrcoeff.json')\n", + "# fn = os.path.join(data_path, label, 'Analysis', 'corrcoeff.json')\n", + "fn = os.path.join(data_path, label, 'Analysis', 'synchrony.json')\n", + "# synchrony.json\n", "with open(fn, 'r') as f:\n", " corrcoeff = json.load(f)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "id": "218367da-82ef-47b6-bf15-083ef3d43013", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Correlation coefficient')" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAECCAYAAAAb5qc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWjElEQVR4nO3dfZAkdX3H8c/H40EhiCJkx4C4JCUYVASzRhMkHLBiPJ8qkQIl50N8uGAFH9hD4vOOYkUp3NMoSQylIiWIsQgaAsfT3gNCEcE5BBSJltGgRHZdsCKKcAJ+80f34Nzc7jzs9GzP/Ob9quq67p5f//o7fXef7f3NdLcjQgCAND2m7AIAAP1DyANAwgh5AEgYIQ8ACSPkASBhu5RdwL777hvj4+NllwEAQ2Xbtm33RMR+7dqVHvLj4+Oq1WpllwEAQ8X2nZ20Y7gGABJGyANAwgh5AEgYIQ8ACSPkASBhhHyDSkWyW0+VStlVAkDnCPkG8/PFtAGAQUHIA0DCRi7kbZe+n2q1uqzXBtmw1g2kzu0eGmL7eZI+LukRSbWIOM32bpLOk3S+pA9IWiVpc0S81/bqfP0P8y42RMSlS/U/MTERK3nFq20t9Z47zf9OnrPSej/Le22QDWvdwLCyvS0iJtq16+S2BndKOjYiHrR9oe1nSXqSpBskbYmIq/MdbrFdv4/CFyLifcstfjCtkTSZza2Z1caNG8stBwA60Ha4JiLmIuLBfPFhZWf0x0u6JiIekiTbqyTNSbqvk53aXme7Zru2sLCwvMp7YHvRSWp1Kj8pab2k9briiiuW7OO3fe2oWq3u8Fp9vlqttnxtkA1r3cAoaTtc82hD+zBJH4mIl9i+OCJOyNevk3SGpCsj4tRFhmvOiIiblup3eIZrNigLeWlmZkZTU1M97IfhGgC96XS4pqMPXm3vI+kcSW/M5++tvxYR50o6RNIBto/IV38hIlbn05IBP1xmJc1ImtHs7GzZxQBAR9qOydveRdIFkt4ZEXO2T5S0KX9t94jYHhGP2L5f0gOS9u5rxaX57Rj8xo2tz+LbmZ6eXtZrg2xY6wZS18m3a14t6ZOSbs9XbZd0ckTca/sUSa9S9sNiS0S8f5Hhms9GxBeW6n+lh2taKfLbNQDQT4V9uyYiLpJ0UUPHJ0bEvflrn5b06ab2WyU9tduCAQDF6/piqIj4cj8KAQAUb+SueG1lbKyYNgAwKEp/xusgmZsruwIAKBZn8gCQMEIeABJGyANAwgh5AEgYIQ8ACSPkASBhhDwAJIyQB4CEEfIAkDBCHgASRsgvR6WS3Ze4eapUyq4MAHZAyC/H/Hx36wGgJIQ8ACSMkAeAhBHyTarV6k7r3OlzATtsX9/HYvtqXt/cZqltMBz4+8NKa/uM1x0a28+T9HFJj0iqRcRptneTdJ6y57p+QNIqSZsj4r35814nI+J9S/U5SM94lbKAbj4mO61rFeIRi/axWH9LtWtc39ymXd8YbPz9oSiFPeO1yZ2Sjo2IB21faPtZkp4k6QZlD/K+Ot/5Ftv7dV11QjZs2CBJmp2d1caNG0uuBsCo6mq4JiLmIuLBfPFhZWf0x0u6JiIekiTbqyTNSbpvqX5sr7Nds11bWFhYXuUFqlarsv3oMEt9vvFX6/o621rqPN767VDN+vXrtX79ek1OTi65j8Z+V69evWgNzfteqj4Mrk7+fQH90tVwzaMb2YdJ+khEvMT2xRFxQr5+naQzJF0ZEaeO8nBN3czMjKamphbtj+Ga0cPfH4rS6XBN1x+82t5H0jmS3pjP31t/LSLOlXSIpANsH9Ft3ymZmZnRzMyMZmdnyy4FwAjrakze9i6SLpD0zoiYs32ipE35a7tHxPaIeMT2/ZIekLR34RX32fT0dCH91M/em8/iG/ex1L4a1ze3Kao+lIO/P6y0br9d82pJn5R0e75qu6STI+Je26dIepWyHxxbIuL9wzhc05E2wzUA0G+dDtcsa0y+YScnRsSXl92BCHkAWI6+jck36jXgh9bYWHfrAaAk3X5PHpI0N1d2BQDQEW5rAAAJI+QBIGGEPAAkjJAHgIQR8gCQMEIeABJGyANAwgh5AEgYIQ8ACSPkASBhhDwAJGxkQ75SyW4mWZ8qlbIrAoDijWzIz8+3XgaAFIxsyAPAKBiKkC/iqfZu9aCPFu1b7buIugCgn3p6MtSjndhTkv5S0lpJN0q6I3/pi/nDvZfUyZOhinjCfXMfi2V+4y7q7Vvtu4i6AGA5On0yVM8PDbG9u6RnN6y6JiLW9trvylgjaTKfn5W0scRaAKB4RQzXvEnS+d1sYHud7Zrt2sLCwqJtqtWqbD86bFKf72WIpN5H1qeVBfz6fLqi6XUtuu9+1AUA/dLrg7x3lXRhRJxo+3rtPFyzISIubdVHucM1G5QFvCTNKGJqp/YM1wAYRCs1XPMaSV9sWjdEwzWzkmYa5qdatAWA4dNryB8i6XDbp0h6hqSX9V7Szqanp/vRrXYcg1884Fvtu391AUAxCvl2jSQtMVxzeUSc3Wq7ToZrirDcb9cAwCBasW/X1EXEC/LZsaL6LFK3gU3AA0jBUFwMBQBYnpEN+bGx1ssAkILChmuGzdxc2RUAQP+N7Jk8AIwCQh4AEkbIA0DCCHkASBghDwAJI+QBIGGEPAAkjJAHgIQR8gCQMEIeABJGyANAwgj5IlQq2Q3qW02VStlVAhhBhHwR5ueLaQMABSPkASBhhYe87Snb19set31BEX1Wq9UiuimMF3t24AD322zQjieA/ik05G3vLunZRfYpSR/84AeL7nKkcTyB0VH0mfybJJ1fcJ9DZ42kDfm0puRaAIy2wkLe9q6Sjo6IzR20XWe7Zru2sLCwaJtqtSrbjw5h1OcHZaihXo9tNQ+yTEpan0+T9fbN2ywy9dOgH08A/eGIKKYj+w2SfhYRX7V9vaS1kj4cEWtbbTcxMRG1Wq1d3yqqziLsVE9TQG9QFvCSNCNpqv5Cm/ewUu9z0I4ngO7Z3hYRE+3aFfmM10MkHW77FEnPkPSyAvseKrPKwr0+P9WiLQD0U2EhHxF/V5/Pz+T/Q9Lziuh7enq6iG5WzMaG+UEM+GE7ngCWr7DhmuXqZLhm4HU6ns4QCYCCdDpcw8VQAJAwQr4IY2PFtAGAghX5wevompsruwIAWBRn8gCQMEIeABJGyANAwgh5AEgYIQ8ACSPkASBhhDwAJIyQB4CEEfIAkDBCHgASRsgDQMII+UVUKtndg1tNlUrZVQJAe4T8Iubni2kDAGUj5AEgYSMZ8u70SU5Dvk8A6DnkbY/bnre91fbVTctbba8rolAAQPeKemjINRGxVspCv3EZAFCeokL+GNvXSbpE0lcK6nOArJE0mc/PStpYYi0A0LkiQv5uSQdL2i7p3yVtkvRC21vz1zdExKWNG+RDOOsk6cADDyyghO61HyOPhvlJSevz+Zl6D2KYHcCg6znkI2K7soCX7cskvVRthmsi4lxJ50rSxMRELNWunyKW3m1n4R1q0cUiffITAcDKK+KD170aFo9UdiafmFllZ/Az+TwADIcihmuOsn2msrP56yXNa8fhmssj4uwC9lOixjH4qdKqAIBuFTFcs1E7fxI51mu//dRqqCalfQLASF4MBQCjgpBfxFgHv4d00gYAylbU9+STMjdXdgUAUAzO5AEgYYQ8ACSMkAeAhBHyAJAwQh4AEkbIA0DCCHkASBghDwAJI+QBIGGEPAAkjJAHgIQR8iupUskeO1XEVKmU/W4ADAFCfiXNzw9mXwCSRcgDQMIKC3nb47bnbW+1fXW+fEFR/Q+qVB7Q3e37qFar/SlkyHAcMOhc1GPpbI9L+nBErF1seSkTExNRq9UKqaEMtjt/tF/RPxAKfKRgV+9jGe1TxXFAWWxvi4iJdu2KfmjIMbavk3SJpK8U3PdIWiNpMp+f1c4P0wWAVoock79b0sGSjlGWS49fqqHtdbZrtmsLCwsFllAO251Ny+h7UtL6fJpsWO9u9tvB1IlqtbpD+/r8qA1ZcBwwTAobrtmhU/stkp4o6VCGa3Zo3HX/G5QFvCTNSJpqfJHhmtJxHFCWTodrivzgda+GxSMlbSqq71E2qyzcZ/J5AOhGkWPyR9k+U9J2SddL4ovcBWgcg59astXKm56eLruEgcBxwKDry3BNN4Z9uKYrA/ztGgDDZcWHawAAg4eQB4CEEfIraWxsMPsCkKyiL4ZCK3NzZVcAYMRwJg8ACSPkASBhhDwAJIyQB4CEEfIAkDBCHgASRsgDQMIIeQBIGCEPAAkj5AEgYYR8H1Qq2V2FW02VStlVAhgFhHwfzHfwuJRO2gBArwh5AEgYIQ8ACSsk5G2/1vYm21ttH2l7Pp/fantdEfsYFC76EX4l7QPAaOj5fvK295d0dEQcly+PS7omItb22jcAoDdFPDTkRZJW2d4k6TuSPlFAn4lZI2kyn5+VtLHEWgCMkiKGa8Yk7Zafyf9K0iskvbBhuOblzRvYXme7Zru2sLBQQAkry3bLSWoebpmUtD6f6mHfansAKEYRZ/I/l3RtPr9Z0oTaDNdExLmSzpWkiYmJKKCGFRXRuuTOcjq0VDcEPYCiFHEmf4Okw/L5wyUNXWj336ykmXyaLbkWAKOk5zP5iLjF9gO2t0q6R9J7JF2XL0vS5RFxdq/7GW6NY/BTpVUBYPQUMVyjiDi9adVYEf0OonZDNcOyDwCjgYuhACBhhHwfjHXwe0wnbQCgV4UM12BHc3NlVwAAGc7kASBhhDwAJIyQB4CEEfIAkDBCHgASRsgDQMIIeQBIGCEPAAkj5AEgYYQ8ACSMkAeAhBHyZapUssdILWeqVMquHsAQIOTLND9fzrYARgYhDwAJI+QLlsJDuLt5D9VqtX+FDBGOAwaVi3zUnO3XSnqdpFWS3ivpLRGxttU2ExMTUavVCquhbLY7f3xfrz8Q+vSYwG7eQ1fvN2EcB6w029siYqJdu8IeGmJ7f0lHR8Rx+fJ4UX1DWiNpMp+f1Y6PBgeApRQ5XPMiSatsb7L9KWVn84uyvc52zXZtYWGhwBIGg+3Opi76nJS0Pp8mJbmb/XQ5tVOtVndoW58ftSELjgOGQWHDNbbfLelZEXGy7bMkzUt6DsM1LRt33O8GZQEvSTOSpiSGawYIxwErrdPhmiLP5H8u6dp8frOkxxXY98ibVRbuM/k8AHSiyAd53yDpzfn84ZI4rSlQ4xj8VGlV7Gx6errsEgYCxwGDquhv13xM0oSkeyS9R9IHGK5p2bi3nQ3AcA2Acqz4t2skKSJOb1rVMuBTlEI4pvAeAGS4GAoAEkbIl2lsrJxtAYyMQodr0KW5ubIrAJA4zuQBIGGEPAAkjJAHgIQR8gCQMEIeABJGyANAwgh5AEgYIQ8ACSPkASBhhDwAJIyQB4CEEfIAkDBCHgASRsgDQMIIeQBIGCEPAAkj5AEgYS77oc22FyTd2abZvpLuWYFyUsdx7B3HsBgcx94dEhF7tWtU+uP/ImK/dm1s1yJiYiXqSRnHsXccw2JwHHtnu9ZJO4ZrACBhhDwAJGxYQv7csgtIBMexdxzDYnAce9fRMSz9g1cAQP8My5k8AGAZCHkASNjAh7ztP7f9Xdvft/2ususZNrafYnuL7Tts32777WXXNKxsr7L9TduXlV3LsLL9BNsX2/6v/N/kn5Rd07CxfVr+f/nbti+y/dhW7Qc65G2vkvSPkl4s6VBJr7Z9aLlVDZ2HJa2PiD+U9HxJf8sxXLa3S7qj7CKG3D9IujIini7p2eJ4dsX2/pLeJmkiIp4paZWkV7XaZqBDXtIfS/p+RPwgIn4t6UuSXlFyTUMlIu6OiJvz+V8o+0+1f7lVDR/bB0h6iaTPlF3LsLL9eEl/JumzkhQRv46I/yu1qOG0i6TH2d5F0h6SftKq8aCH/P6SftywfJcIqGWzPS7pCEk3llzKMPqEpDMk/abkOobZ70takHRePuz1Gdt7ll3UMImI/5X0MUk/knS3pJ9HxNWtthn0kPci6/jO5zLY/h1J/ybpHRFxX9n1DBPbL5X004jYVnYtQ24XSc+R9M8RcYSk+yXxOVsXbD9R2WjGQZJ+T9Kette22mbQQ/4uSU9pWD5AbX41wc5s76os4C+MiEvKrmcIHSnp5bb/R9mQ4bG2Lyi3pKF0l6S7IqL+m+TFykIfnZuU9MOIWIiIhyRdIulPW20w6CH/DUlPs32Q7d2UfcBwack1DRXbVjYGekdEbCi7nmEUEe+OiAMiYlzZv8HNEdHy7Ak7i4g5ST+2fUi+6jhJ3ymxpGH0I0nPt71H/n/7OLX58Lr0u1C2EhEP2z5V0lXKPkX+XETcXnJZw+ZISa+R9C3bt+Tr3hMRG8srCSPsrZIuzE/afiDpr0uuZ6hExI22L5Z0s7Jvzn1TbW5vwG0NACBhgz5cAwDoASGPntmu2P6S7f+2/R3bG20f3If9jNv+dgdtTm5YnrD9yaJr6UV+leJt+ZWLT7d9S/6Vwj+wfUObbT9ke3KZ+z3c9prlVY1hxXANepJ/+HODpPMj4tP5usMl7RUR13Ww/aqIeGSp5aa245Iuy6/0W6q/1ZJOj4iXdvE2VoztiqQbI+Kp+fK7JD0uIqZXYN+vV3al5Kn93hcGB2fy6NUxkh6qB7wkRcQtEXGdM2fn99j4lu2TpCyI8/vpfFHZB8LNy6vy7b6Rn/H+TfNO8zP262zfnE/1r5F9VNJR+dnxaXnfl+Xb7GP7q3mfX7d9WL6+avtztrfa/oHtty32RvP7KN1s+1bbm9r0uWfe5zfys/T6ldpXS/rdvL5pSe+Q9CbbW/LtftmwvzPy43ar7Y/m6z5v+4R8/o9sX2t7m+2rbD85X7/V9lm2b7L9PdtH5R90fkjSSfm+T+r2LxpDKiKYmJY9KbuPxseXeO2Vkq5R9s2oMWVf/3qypNXKLoQ5KG/XvLxO0vvy+d0l1ZRd/DEu6dv5+j0kPTaff5qkWkNflzXU8OiypE9Jms7nj5V0Sz5fVfbbyO7KHjB9r6Rdm97Lfsquvq7XuE+bPv9e0tp8/gmSvidpz8b30LDv0xuWf5n/+eK8pj2a9vd5SSdI2jV/fb98/UnKvn0mSVslzeTzayTN5vOvl3RO2f9mmFZ2GuivUGLovUDSRZENv8zbvlbScyXdJ+mmiPhhQ9vG5eMlHVY/Y5W0t7Ig/15D+10lnZMPDT0iqZPPAF6g7AePImKz7SfZ3jt/7fKI2C5pu+2fKvuhdFfDts+X9LV6jRHxszZ9Hq/sAqrT83aPlXSgpAc6qFPKLno5LyJ+1bS/ukMkPVPSNdmImVYpu8y9rn7R2zZlP1gwogh59Op2ZWeWi1nsthR197dYtqS3RsRVO3SWjcnXnSZpXtmdDB8j6cEOam11m4ztDese0c7/N6zFb6mxVJ+W9MqI+O4OjXd8D60stb/G12+PiKVu1Vt/P4u9F4wQxuTRq82Sdrf95voK28+1fbSkrykbA15lez9ldyC8qYM+r5L0Fme3Y5Dtg73zjaz2lnR3RPxG2cVeq/L1v5C01xL9fk3SX+V9rpZ0T3R+H5//lHS07YPy7fdp0+dVkt6afzAt20d0uJ+6qyW9wfYeTfur+66k/Zzfj932rraf0abPVscGiSLk0ZOICEl/IemFzr5CebuyceafSPqKpNsk3arsh8EZkV3a3s5nlF3ufrOzr0z+i3Y+G/0nSa+z/XVlQzX13wRuk/Rw/mHlaU3bVCVN2L5N2Qe0r+vifS4o+6zgEtu3SvrXNn2eqWxI6bb8PZzZ6b7y/V2p7BYeNWdXKp/e9Pqvlf0GdVZezy1qcw8TSVskHcoHr6OFr1ACQMI4kweAhBHyAJAwQh4AEkbIA0DCCHkASBghDwAJI+QBIGH/DxLdb6d/PwxfAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "print(\"plotting Synchrony\")\n", + "# print(\"plotting Synchrony\")\n", "\n", "syn = np.zeros((len(M.area_list), 8))\n", "for i, area in enumerate(M.area_list):\n", @@ -1560,7 +1585,8 @@ "syn = np.transpose(syn)\n", "masked_syn = np.ma.masked_where(syn < 1e-4, syn)\n", "\n", - "ax = axes['E']\n", + "# ax = axes['E']\n", + "ax = plt.subplot()\n", "d = ax.boxplot(np.transpose(syn), vert=False,\n", " patch_artist=True, whis=1.5, showmeans=True)\n", "set_boxplot_props(d)\n", @@ -1571,7 +1597,8 @@ "ax.set_yticklabels(population_labels[::-1], size=8)\n", "ax.set_yticks(np.arange(1., len(M.structure['V1']) + 1., 1.))\n", "ax.set_ylim((0., len(M.structure['V1']) + .5))\n", - "ax.set_xticks(np.arange(0.0, 0.601, 0.2))\n", + "# ax.set_xticks(np.arange(0.0, 0.601, 0.2))\n", + "ax.set_xticks(np.arange(0.0, 10.0, 2.0))\n", "ax.set_xlabel('Correlation coefficient', labelpad=-0.1)" ] }, @@ -1579,7 +1606,6 @@ "cell_type": "markdown", "id": "a3847e67", "metadata": { - "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ @@ -1589,7 +1615,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "id": "65377033-f3c0-4f90-be13-70594cfda292", "metadata": {}, "outputs": [], @@ -1604,12 +1630,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 64, "id": "d7480a9b", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.axis.XTick at 0x7f02ed742ca0>,\n", + " <matplotlib.axis.XTick at 0x7f02ed742c70>,\n", + " <matplotlib.axis.XTick at 0x7f02ed7423a0>]" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAECCAYAAAAb5qc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAATWUlEQVR4nO3df4xlZ13H8c+H7Q+NlArdde6mBYcY2gRoLWEKxhbbwlB0DVQFmkq2KAIDJBp1F9QYk7kbyh+k7qLSmLoBDNBSBVtIoU1oZ7uLXZYUbpGotJQQobEuM05LUii2K61f/7jnLjPD3Jl75z7nPvc+9/1KTnLOvefH95yZ/eyZ7/3xOCIEACjTM3IXAACoDyEPAAUj5AGgYIQ8ABSMkAeAgp2Su4Dt27fH9PR07jIAYKzcd999j0TEjs3Wyx7y09PTarVaucsAgLFi+6Fe1qNdAwAFI+QBoGCEPAAUjJAHgIIR8gBQMEI+s0ZDsuubGo3cZwggJ0I+s6Wl8d4/gNFGyANAwYoJ+WazmeW4trMcd5RwDYDRtWnI23657WO277H9geqx02zfZPsK20dtf8n2+6rnLrP9kO0j1fS6uk9Ckvbt2zeMwwDAWOnlaw0ekvTKiHiyCvbzJZ0l6ZikwxFxpyTZPmy78z0KH4+Iv6in5Em0S9JsNb8g6Y6MtQAYJ5veyUfEYkQ8WS0+JelpSVdIuisifiRJtrdJWpT0/V4OanvOdst2a3l5eWuVq92isX2yXdCZH3brpnPcrUxSL62OWUl7q2l2k3V/orqB6uvtHACMqp578rYvkLQ9Iu6XdG5EfLN6fE7Sg5IejYgT1erXrGjXvGztviLiYETMRMTMjh2bfolaV81mUxGhzji1nflhh3znuFuZpLrH2N16bb2fA4BR1VPI236OpOslvbWaf7TzXEQclHSepHNsv6R6+OMRcVk1fTl10ZNnQdL+alrIXAuAcbJpT972KZJulPSeiFi0fZWkQ9Vzp0fEiYh42vYPJT0h6cxaK+5ifn4+x2GHZGUPfk+2KgCMn15eeH2jpIskvb/qv56Q9KbqubfYvrraz+GI+IbthtrtmkuqdT4cER9PXPdPyPUWStoVXANglG0a8hFxs6SbO8u2r4qIR6vnbpB0w5r1j0j6+bRlAgC2ou8PQ0XEJ+soBACQXjGfeB1XU1PjvX8Aoy37GK+TbnExdwUASsadPAAUjJAHgIIR8gBQMEIeAApGyANAwQh5ACgYIQ8ABSPkAaBghDwAFIyQB4CCEfIlazQkO+3UaOQ+KwB9IORLtrQ0HvsEUBtCHgAKRsgDQMEI+S7qHE6wGkYRXXB9gHT6CnnbL7d9zPY9tj9QPXaa7ZtsX2H7qO0v2X5f9dxltq+to/C67du3L3cJADCwfgcNeUjSKyPiySrYz5d0lqRjag/kfack2T5se0fiWpHYLkmz1fyCpDsy1gKgHn3dyUfEYkQ8WS0+JelpSVdIuisifiRJtrdJWpT0/W77sT1nu2W7tby8vLXKa9BsNmX7ZLugM19H66az71qnTWqYlbS3mmY3Wfdk3UOoHUA6W+rJ275A0vaIuF/SuRHxzerxOUkPSno0Ik502z4iDkbETETM7NgxOjf8zWZTEaGIkKST83WEfGfftU7Jq5ZiCLUDSKfvkLf9HEnXS3prNf9o57mIOCjpPEnn2H5JsipRiwVJ+6tpIXMtAOrRV0/e9imSbpT0nohYtH2VpEPVc6dHxImIeNr2DyU9IenM5BUPyfz8fO4SareyB78nWxUA6tTvC69vlHSRpPdXvdMTkt5UPfcW21dX+zwcEd+wPbafga/zLZS0JDbG9QHS8SD/oGxfFRGfHKSAmZmZaLVag+wC3dT1IiYhDGRn+76ImNlsvYE+DDVowKNmU1PjsU8Atem3XYNxsriYuwIAmfG1BgBQMEIeAApGyANAwQh5ACgYIQ8ABSPkAaBghDwAFIyQB4CCEfIAUDBCHgAKRsgDQMEI+YI0Gu0vnqxraoztF0cDk4uQL8jS0njvH0B6hDwAFCx7yB8/fjx3CUm4rgE6JkjKa1jnyF7AOBloZKiTO7H3SPotSbsl3SvpgeqpT1SDe2+0bZQw3Jvt7MPWDeP/mTpPMeU1HIWfB1CnXkeGGnjQENunS/rFFQ/dFRG7B90vUtslabaaX9DqYbwBlCpFu+Ztkj7azwa252y3bLeqZdke+z+xO+eRa5I2upWflbS3mmY3WG/DM6y5/sE0m81V+yrl9woYxKADeZ8q6aaIuMr2Uf1ku+ZARNy2yT5o1ySrYaNnD6gd8JK0X9KeLR2Ddg0wGobVrrlG0ifWPEa7ZiQtqB3unfmthTyA8TJoyJ8n6ULb75T0Ikmv7XcHO3fuHLAE9GZlD778gJ+fn89dAjASkry7RpK6tGtuj4jrNtpuZmYmWq1WkhpyGoX2AO+uASbH0N5d0xERl1SzU6n2OU4Ip8FxDYH0sn8YCgBQH0K+IFM1/w1V9/4BpJesXYP8FhdzVwBg1HAnDwAFI+QBoGCEPAAUjJAHgIIR8gBQMEIeAApGyANAwQh5ACgYIQ8ABSPkAaBghDwAFIyQHxeNRvsL44cxNRq5zxZAIoT8uFhaKvNYAGpFyANAwZKHvO09to/anrZ942brHz9+PHUJSXgYY+mhZ738PJrNZk+PAZMk2RivkmT7dEkHJf2C2uO9XhsRuzfZJkZx2LeRG2902P/pjNK5q7efx3rrjNzPEUik1zFeU9/Jv03SRxPvE33aJelANe3KXAuAvJKFvO1TJV0aEXf3sO6c7ZbtVrUs2yP3p3WnrpGY+qh7VtLeaprdynmP2rlv8FdMs9lctc56243q7xcwDMnaNbZ/T9L3IuIzto+Kdk1afbRrDqgd8JK0X9KerRxvlM5dtGuAtXpt16Qc4/U8SRfafqekF0l6bcJ9ow8Laod7Z35LIQ+gCMlCPiL+tDNf3cl/VtLLN9tu586dqUpA5Y4V85MU8PPz8z09BkySpO+u2YqZmZlotVpZaxgLE/7uGgCr5Xp3DQBghBDy42JqqsxjAahVyhdeUafFxdwVABhD3MkDQMEIeQAoGCEPAAUj5AGgYIQ8ABSMkAeAghHyAFAwQh4ACkbIA0DBCHkAKBghDwAFI+QnXKPR/hbjrUyNRu7qAWyGkJ9wS0t5tgUwHIQ8ABSMkB8jHvboUDUq6VyAUTZwyNuetr1k+4jtO9csH7E9l6LQUjWbzdwljJX1rhfXEOhu4DFebU9LujYidq+3vJlJH+PVtnr9GfSzbu/HH2z7rZaz1XNZb7s6rgsw6nod4zXVyFCX275H0q2SPp1on8hml6TZan5B0h0ZawEwiBQ9+e9KOlfS5Wonw7MkvXpFu+Z1azewPWe7Zbu1vLycoITx0mw2ZftkX7oz30vbobNuqkla71Z+VtLeappd5/mT1Qxw3MGv11avITBJBm7XrNqZ/S5Jz5b0Qto1vRnNds0BtQNekvZL2tN1e9o1QB69tmtSvPB6xorFiyUdGnSfyG1B7XDfX80DGFcpevKvsP1eSSckHZW0pKpdUz1/e0Rcl+A4RZqfn89dwjpW9uC738XnsN71Gs1rCIyGpO2arZj0dk1uud5dA2AwQ2vXAABGFyE/4aam8mwLYDhSvU8eY2pxMXcFAOrEnTwAFIyQB4CCEfIAUDBCHgAKRsgDQMEIeQAoGCEPAAUj5AGgYIQ8ABSMkAeAghHyAFAwQn5cNBrt7wUextRo5D5bAIkQ8uNiaanMYwGoFSEPAAVLFvK2p20v2T5i+85q+cYU+242myl2s2UedPikCZf7+qX8/cn9uwj0K9nwf7anJV0bEbvXW+6ml+H/bCvnMIW5j18VMdzjJTzf3Ncv5fFznwvQ0evwf6kHDbnc9j2SbpX06cT7Rp92SZqt5he0enhuAJMhZU/+u5LOlXS52tnyrG4r2p6z3bLdWl5eXnedZrMp2yf/1O/M5/pzuXP8bNMWap6VtLeaZjdZd9W5Jj7fHFL+/oza7yLQj2TtmlU7td8l6dmSXki7JlkRfW9yQO2Al6T9kvb0szHtmtr3BQyi13ZNyhdez1ixeLGkQ6n2ja1ZUDvc91fzACZPyp78K2y/V9IJSUclJXuz9fz8fKpdTZSVPfi+7uILk/L3h99FjJta2jX96KVdA431u2sApDf0dg0AYPQQ8gBQMEJ+XExNlXksALVK/WEo1GVxMXcFAMYQd/IAUDBCHgAKRsgDQMEIeQAoGCEPAAUj5AGgYIQ8ABSMkAeAghHyAFAwQh4ACkbID0Gj0f6m4LqnRiP3mQIYNYT8ECwlGz5lNI4DYHwQ8gBQMEIeAAqWJORtv9n2IdtHbF9se6maP2J7LsUx6uRhD603prhOwPgZ+PvkbZ8t6dKIeFW1PC3projYPei+AQCDSTFoyGskbbN9SNL9kv4qwT6hXZJmq/kFSXdkrAXAuEoR8lOSTouIV9l+v6QrJb3a9pHq+QMRcdvKDaoWzpwkPe95z0tQwuDqb0VEn+vPStpbze/vcRuLjgqAlVKE/GOSvlDN3y1pRpu0ayLioKSDkjQzM9Nv+tUior4yhhe8oRpPg548MIZSvPB6TNIF1fyF6v+WFetaUPsOfn81DwD9G/hOPiK+ZvuJqj3ziKQ/l3TPinbN7RFx3aDHmTwre/B7slUBYLylaNcoIt695qGpFPsdljpbNSXhOgHjhw9DAUDBCPkhmBrS3zXDOg6A8ZGkXYONLS7mrgDApOJOHgAKRsgDQMEIeQAoGCEPAAUj5AGgYIQ8ABSMkAeAghHyAFAwQh4ACkbIA0DBCHkAKBghP+oajfbQUsOcGo3cZw0gEUJ+1C0tTcYxAdSCkAeAghHyXTBodV6DXP9ms5muEGDMJQ1522+2fcj2EdsX274x5f6BXuzbty93CcDISDZoiO2zJV0aEa+qlqdT7Rv92SVptppf0OohwQFMlpR38q+RtK26k/+gpG3dVrQ9Z7tlu7W8vJywhLRs55+2UPespL3VNLvJuuue9wice7+azeaqbTvztG4w6VKG/JSk06o7+f+RdGW3FSPiYETMRMTMjh07EpaQVkTkn3Kc9wice7+azeaqbTvzhDwmXcqQf0zSF6r5uyX9dMJ9ow8LkvZX00LmWgDklXIg72OS3l7NXyhluQmFVvfg92SrIp/5+fncJQAjI9mdfER8TdITto9IukjSP6XaN9APWjTAj6W8k1dEvHvNQ7tT7n+YttIXRjpcfyANPgwFAAUj5Efd1NRkHBNALZK2a1CDxcXcFQAYY9zJA0DBCHkAKBghDwAFI+QBoGCEPAAUjJAHgIIR8gBQMEIeAApGyANAwQh5ACgYIQ8ABSPkAaBghDwAFIyQB4CCEfIAUDBCHgAKRsgDQMGce8Bk2z+Q9GDWIoDutkt6JHcRwDrOi4gzNltpFIb/ezAiZnIXAazHdovfT4wi261e1qNdAwAFI+QBoGCjEPIHcxcAbIDfT4yqnn43s7/wCgCozyjcyQMAakLIA0DBsoa87V+1/aDtb9n+s5y1ACvZ/ojt/7b977lrAVay/Vzbh20/YPvrtv9ww/Vz9eRtb5P0TUmvlvSwpK9I+u2IuD9LQcAKtn9F0uOSPhYRL85dD9Bhe6eknRHxVdtnSLpP0m90y86cd/Ivk/StiPiPiPhfSf8g6cqM9QAnRcQ/S/pe7jqAtSLiuxHx1Wr+B5IekHR2t/VzhvzZkv5zxfLD2qBQAMBqtqclvUTSvd3WyRnyXucx3s8JAD2w/UxJt0j6o4j4frf1cob8w5Keu2L5HEnHM9UCAGPD9qlqB/xNEXHrRuvmDPmvSHqB7efbPk3S1ZJuy1gPAIw825b0YUkPRMSBzdbPFvIR8ZSk35f0ebVfOPhkRHw9Vz3ASrZvlvQlSefZftj2W3PXBFQulnSNpFfa/lo17eq2Ml9rAAAF4xOvAFAwQh5jx/bjGY75u7av73ObGdt/U81fZvuX66kO6G4URoYCBmZ7W0Q83W05Qz2nRERLUmf0nsvU/gTtsVw1YTJxJ4+xVd0dH7b9CUn/ts7yNtvX2f6K7X+1/Y5qu2fY/tvqez8+Z/sO22+onvuO7e3V/IztI+sc97W277X9L7YXbE9VjzdtH7R9p6SPVfV8rvrAyjsl/XH1ItkrbH+7ehucbD+rOu6pQ7hsmDDcyWPcvUzSiyPi27YvW7M8J+mxiLjI9umSvlgF8EslTUs6X9LPqf3uro/0ccyjkn4pIsL22yT9iaS91XMvlXRJRDxR1aOI+I7tGyQ9HhF/KUnVfx6/Lukzar99+JaI+NGWrgCwAUIe4+7LEfHtLstXSLqgc5cu6UxJL5B0iaRPRcT/SVq0fbjPY54j6R+rL4o6TdLK498WEU/0sI8Pqf2fw2ckvUXS2/usAegJ7RqMux9usGxJfxARF1bT8yPiTq3/lRodT+nH/y5+qss6H5R0fUScL+kda9ZbW8+6IuKLkqZtXyppW0TwlcaoBSGPkn1e0rtW9L7Ptf0zardbXl/15qfUflG04ztqt1wk6fVd9numpP+q5n+nx1p+IOmMNY99TNLNkv6+x30AfSPkUbIPSbpf0lerwT/+Tu0W5S1qf3dS57F7JT1WbbNP0l/bvkdSt3fnNCV9qlrnkR5r+ayk3+y88Fo9dpOkZ6sd9EAt+MQrJpLtZ0bE47bPkvRlSRdHxOKQa3iDpCsj4pphHheThRdeMak+Z/tn1X7h9L0ZAv6Dkn5NUtfvHAFS4E4eAApGTx4ACkbIA0DBCHkAKBghDwAFI+QBoGD/D/k7Lt9knDSwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "print(\"plotting Irregularity\")\n", + "# print(\"plotting Irregularity\")\n", "\n", "LvR = np.zeros((len(M.area_list), 8))\n", "for i, area in enumerate(M.area_list):\n", @@ -1625,7 +1676,8 @@ "LvR = np.transpose(LvR)\n", "masked_LvR = np.ma.masked_where(LvR < 1e-4, LvR)\n", "\n", - "ax = axes['F']\n", + "# ax = axes['F']\n", + "ax = plt.subplot()\n", "d = ax.boxplot(np.transpose(LvR), vert=False,\n", " patch_artist=True, whis=1.5, showmeans=True)\n", "set_boxplot_props(d)\n", @@ -1637,26 +1689,25 @@ "ax.set_ylim((0., len(M.structure['V1']) + .5))\n", "\n", "\n", - "x_max = 2.9\n", + "x_max = 1.9\n", "ax.set_xlim((0., x_max))\n", "ax.set_xlabel('Irregularity', labelpad=-0.1)\n", "ax.set_xticks([0., 1., 2.])\n", "\n", - "axes['G'].spines['right'].set_color('none')\n", - "axes['G'].spines['left'].set_color('none')\n", - "axes['G'].spines['top'].set_color('none')\n", - "axes['G'].spines['bottom'].set_color('none')\n", - "axes['G'].yaxis.set_ticks_position(\"none\")\n", - "axes['G'].xaxis.set_ticks_position(\"none\")\n", - "axes['G'].set_xticks([])\n", - "axes['G'].set_yticks([])" + "# axes['G'].spines['right'].set_color('none')\n", + "# axes['G'].spines['left'].set_color('none')\n", + "# axes['G'].spines['top'].set_color('none')\n", + "# axes['G'].spines['bottom'].set_color('none')\n", + "# axes['G'].yaxis.set_ticks_position(\"none\")\n", + "# axes['G'].xaxis.set_ticks_position(\"none\")\n", + "# axes['G'].set_xticks([])\n", + "# axes['G'].set_yticks([])" ] }, { "cell_type": "markdown", "id": "90ae8f4c", "metadata": { - "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ @@ -1666,10 +1717,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 66, "id": "0308d50a-1906-4860-9194-7f8664bd1f9d", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: '/opt/app-root/src/MAM2EBRAINS/simulations/27d81076e6d6e9e591684be053078477/Analysis/rate_time_series_full/rate_time_series_full_V1.npy'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "Input \u001b[0;32mIn [66]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m area \u001b[38;5;129;01min\u001b[39;00m areas:\n\u001b[1;32m 6\u001b[0m fn \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(data_path, label,\n\u001b[1;32m 7\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAnalysis\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 8\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrate_time_series_full\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 9\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrate_time_series_full_\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m.npy\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(area))\n\u001b[0;32m---> 10\u001b[0m rate_time_series[area] \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/srv/main-spack-instance-2302/spack/opt/spack/linux-ubuntu20.04-x86_64/gcc-10.3.0/py-numpy-1.21.6-6fewtq7oarp3vtwlxrrcofz5sxwt55s7/lib/python3.8/site-packages/numpy/lib/npyio.py:417\u001b[0m, in \u001b[0;36mload\u001b[0;34m(file, mmap_mode, allow_pickle, fix_imports, encoding)\u001b[0m\n\u001b[1;32m 415\u001b[0m own_fid \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 416\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 417\u001b[0m fid \u001b[38;5;241m=\u001b[39m stack\u001b[38;5;241m.\u001b[39menter_context(\u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mos_fspath\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrb\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 418\u001b[0m own_fid \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 420\u001b[0m \u001b[38;5;66;03m# Code to distinguish from NumPy binary files and pickles.\u001b[39;00m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/opt/app-root/src/MAM2EBRAINS/simulations/27d81076e6d6e9e591684be053078477/Analysis/rate_time_series_full/rate_time_series_full_V1.npy'" + ] + } + ], "source": [ "# load data\n", "\n", @@ -1682,14 +1746,14 @@ " 'rate_time_series_full_{}.npy'.format(area))\n", " rate_time_series[area] = np.load(fn)\n", "\n", - "# time series of firing rates convolved with a kernel\n", - "rate_time_series_auto_kernel = {}\n", - "for area in areas:\n", - " fn = os.path.join(data_path, label,\n", - " 'Analysis',\n", - " 'rate_time_series_auto_kernel',\n", - " 'rate_time_series_auto_kernel_{}.npy'.format(area))\n", - " rate_time_series_auto_kernel[area] = np.load(fn)" + "# # time series of firing rates convolved with a kernel\n", + "# rate_time_series_auto_kernel = {}\n", + "# for area in areas:\n", + "# fn = os.path.join(data_path, label,\n", + "# 'Analysis',\n", + "# 'rate_time_series_auto_kernel',\n", + "# 'rate_time_series_auto_kernel_{}.npy'.format(area))\n", + "# rate_time_series_auto_kernel[area] = np.load(fn)" ] }, {